Stephen Lynch
A Simple Introduction to Python (eBook, ePUB)
25,95 €
25,95 €
inkl. MwSt.
Sofort per Download lieferbar
13 °P sammeln
25,95 €
Als Download kaufen
25,95 €
inkl. MwSt.
Sofort per Download lieferbar
13 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
25,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
13 °P sammeln
Stephen Lynch
A Simple Introduction to Python (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is aimed at pre-university students and complete novices to programming. After introducing Python as a powerful calculator, simple programming constructs are covered and the NumPy, MatPlotLib and SymPy modules (libraries) are introduced.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 4.08MB
Andere Kunden interessierten sich auch für
- Stephen LynchA Simple Introduction to Python (eBook, PDF)25,95 €
- Stephen LynchPython for Scientific Computing and Artificial Intelligence (eBook, ePUB)57,95 €
- Dimitrios MitsotakisComputational Mathematics (eBook, ePUB)110,95 €
- Gowrishankar SIntroduction to Python Programming (eBook, ePUB)167,95 €
- Greg WilsonSoftware Design by Example (eBook, ePUB)45,95 €
- Valery OchkovSTEM Problems with Mathcad and Python (eBook, ePUB)52,95 €
- Jichun LiComputational Partial Differential Equations Using MATLAB® (eBook, ePUB)46,95 €
-
-
-
This book is aimed at pre-university students and complete novices to programming. After introducing Python as a powerful calculator, simple programming constructs are covered and the NumPy, MatPlotLib and SymPy modules (libraries) are introduced.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 128
- Erscheinungstermin: 11. Juni 2024
- Englisch
- ISBN-13: 9781040034774
- Artikelnr.: 70336856
- Verlag: Taylor & Francis
- Seitenzahl: 128
- Erscheinungstermin: 11. Juni 2024
- Englisch
- ISBN-13: 9781040034774
- Artikelnr.: 70336856
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
In 2022, Stephen Lynch was named a National Teaching Fellow, which celebrates and recognizes individuals who have made an outstanding impact on student outcomes and teaching in higher education. He won the award for his work in programming in STEM subjects, research feeding into teaching, and widening participation (using experiential and object-based learning). Although educated as a pure mathematician, Stephen's many interests now include applied mathematics, cell biology, electrical engineering, computing, neural networks, nonlinear optics and binary oscillator computing, which he co-invented with a colleague. He has authored 2 international patents for inventions, 8 books, 4 book chapters, over 45 journal articles, and a few conference proceedings. Stephen is a Fellow of the Institute of Mathematics and Its Applications (FIMA) and a Senior Fellow of the Higher Education Academy (SFHEA). He is currently a Reader with MMU and was an Associate Lecturer with the Open University from 2008 to 2012. In 2010, Stephen volunteered as a STEM Ambassador, in 2012, he was awarded MMU Public Engagement Champion status, and in 2014, he became a Speaker for Schools. He runs national workshops on "Python for A-Level Mathematics and Beyond," and international workshops on "Python for Scientific Computing and TensorFlow for Artificial Intelligence." He has run workshops in China, Malaysia, Singapore, Saudi Arabia and the USA.
1. Python as a Powerful Calculator. 1.1. BODMAS. 1.2. Fractions: Symbolic
Computation. 1.3. Powers (Exponentiation) and Roots. 1.4. The Math Library
(Module) Chapter. 2. Simple Programming With Python. 2.1. Lists, Tuples,
Sets and Dictionaries. 2.2. Defining Functions (Programming). 2.3. For and
While Loops. 2.4. Conditional Statements, If, Elif, Else. 3. The Turtle
Library. 3.1. The Cantor Set Fractal. 3.2. The Koch Snowflake. 3.3. A
Bifurcating Tree. 3.4. The Sierpinski Triangle. 4. NumPy and MatPlotLib.
4.1. Numerical Python (Numpy). 4.2. MatPlotLib. 4.3. Scatter Plots. 4.4.
Surface Plots. 5. Google Colab, SymPy and GitHub. 5.1. Google Colab. 5.2.
Formatting Notebooks. 5.3. Symbolic Python (Sympy). 5.4. GitHub. 6. Python
for Mathematics. 6.1. Basic Algebra. 6.2. Solving Equations. 6.3. Functions
(Mathematics). 6.4. Differentiation and Integration (Calculus). 7.
Introduction to Cryptography. 7.1. The Caesar Cipher. 7.2. The XOR Cipher.
7.3. The Rivest-Shamir-Adleman (RSA) Cryptosystem. 7.4. Simple RSA
Algorithm Example. 8. An Introduction to Artificial Intelligence. 8.1.
Artificial Neural Networks. 8.2. The And/Or and XOR Gate Anns. 8.3. The
Backpropagation Algorithm. 8.4. Boston Housing Data. 9. An Introduction to
Data Science. 9.1. Introduction to Pandas. 9.2. Load, Clean and Preprocess
the Data. 9.3. Exploring the Data. 9.4. Violin, Scatter and Hexagonal Bin
Plots. 10. An Introduction to Object Oriented Programming. 10.1. Classes
and Objects. 10.2. Encapsulation. 10.3. Inheritance. 10.4. Polymorphism.
Computation. 1.3. Powers (Exponentiation) and Roots. 1.4. The Math Library
(Module) Chapter. 2. Simple Programming With Python. 2.1. Lists, Tuples,
Sets and Dictionaries. 2.2. Defining Functions (Programming). 2.3. For and
While Loops. 2.4. Conditional Statements, If, Elif, Else. 3. The Turtle
Library. 3.1. The Cantor Set Fractal. 3.2. The Koch Snowflake. 3.3. A
Bifurcating Tree. 3.4. The Sierpinski Triangle. 4. NumPy and MatPlotLib.
4.1. Numerical Python (Numpy). 4.2. MatPlotLib. 4.3. Scatter Plots. 4.4.
Surface Plots. 5. Google Colab, SymPy and GitHub. 5.1. Google Colab. 5.2.
Formatting Notebooks. 5.3. Symbolic Python (Sympy). 5.4. GitHub. 6. Python
for Mathematics. 6.1. Basic Algebra. 6.2. Solving Equations. 6.3. Functions
(Mathematics). 6.4. Differentiation and Integration (Calculus). 7.
Introduction to Cryptography. 7.1. The Caesar Cipher. 7.2. The XOR Cipher.
7.3. The Rivest-Shamir-Adleman (RSA) Cryptosystem. 7.4. Simple RSA
Algorithm Example. 8. An Introduction to Artificial Intelligence. 8.1.
Artificial Neural Networks. 8.2. The And/Or and XOR Gate Anns. 8.3. The
Backpropagation Algorithm. 8.4. Boston Housing Data. 9. An Introduction to
Data Science. 9.1. Introduction to Pandas. 9.2. Load, Clean and Preprocess
the Data. 9.3. Exploring the Data. 9.4. Violin, Scatter and Hexagonal Bin
Plots. 10. An Introduction to Object Oriented Programming. 10.1. Classes
and Objects. 10.2. Encapsulation. 10.3. Inheritance. 10.4. Polymorphism.
1. Python as a Powerful Calculator. 1.1. BODMAS. 1.2. Fractions: Symbolic
Computation. 1.3. Powers (Exponentiation) and Roots. 1.4. The Math Library
(Module) Chapter. 2. Simple Programming With Python. 2.1. Lists, Tuples,
Sets and Dictionaries. 2.2. Defining Functions (Programming). 2.3. For and
While Loops. 2.4. Conditional Statements, If, Elif, Else. 3. The Turtle
Library. 3.1. The Cantor Set Fractal. 3.2. The Koch Snowflake. 3.3. A
Bifurcating Tree. 3.4. The Sierpinski Triangle. 4. NumPy and MatPlotLib.
4.1. Numerical Python (Numpy). 4.2. MatPlotLib. 4.3. Scatter Plots. 4.4.
Surface Plots. 5. Google Colab, SymPy and GitHub. 5.1. Google Colab. 5.2.
Formatting Notebooks. 5.3. Symbolic Python (Sympy). 5.4. GitHub. 6. Python
for Mathematics. 6.1. Basic Algebra. 6.2. Solving Equations. 6.3. Functions
(Mathematics). 6.4. Differentiation and Integration (Calculus). 7.
Introduction to Cryptography. 7.1. The Caesar Cipher. 7.2. The XOR Cipher.
7.3. The Rivest-Shamir-Adleman (RSA) Cryptosystem. 7.4. Simple RSA
Algorithm Example. 8. An Introduction to Artificial Intelligence. 8.1.
Artificial Neural Networks. 8.2. The And/Or and XOR Gate Anns. 8.3. The
Backpropagation Algorithm. 8.4. Boston Housing Data. 9. An Introduction to
Data Science. 9.1. Introduction to Pandas. 9.2. Load, Clean and Preprocess
the Data. 9.3. Exploring the Data. 9.4. Violin, Scatter and Hexagonal Bin
Plots. 10. An Introduction to Object Oriented Programming. 10.1. Classes
and Objects. 10.2. Encapsulation. 10.3. Inheritance. 10.4. Polymorphism.
Computation. 1.3. Powers (Exponentiation) and Roots. 1.4. The Math Library
(Module) Chapter. 2. Simple Programming With Python. 2.1. Lists, Tuples,
Sets and Dictionaries. 2.2. Defining Functions (Programming). 2.3. For and
While Loops. 2.4. Conditional Statements, If, Elif, Else. 3. The Turtle
Library. 3.1. The Cantor Set Fractal. 3.2. The Koch Snowflake. 3.3. A
Bifurcating Tree. 3.4. The Sierpinski Triangle. 4. NumPy and MatPlotLib.
4.1. Numerical Python (Numpy). 4.2. MatPlotLib. 4.3. Scatter Plots. 4.4.
Surface Plots. 5. Google Colab, SymPy and GitHub. 5.1. Google Colab. 5.2.
Formatting Notebooks. 5.3. Symbolic Python (Sympy). 5.4. GitHub. 6. Python
for Mathematics. 6.1. Basic Algebra. 6.2. Solving Equations. 6.3. Functions
(Mathematics). 6.4. Differentiation and Integration (Calculus). 7.
Introduction to Cryptography. 7.1. The Caesar Cipher. 7.2. The XOR Cipher.
7.3. The Rivest-Shamir-Adleman (RSA) Cryptosystem. 7.4. Simple RSA
Algorithm Example. 8. An Introduction to Artificial Intelligence. 8.1.
Artificial Neural Networks. 8.2. The And/Or and XOR Gate Anns. 8.3. The
Backpropagation Algorithm. 8.4. Boston Housing Data. 9. An Introduction to
Data Science. 9.1. Introduction to Pandas. 9.2. Load, Clean and Preprocess
the Data. 9.3. Exploring the Data. 9.4. Violin, Scatter and Hexagonal Bin
Plots. 10. An Introduction to Object Oriented Programming. 10.1. Classes
and Objects. 10.2. Encapsulation. 10.3. Inheritance. 10.4. Polymorphism.