For this third edition, several new chapters present the fixed point index and its applications. The exposition and mathematical content is improved throughout. This book is ideal for self-study for mathematicians and students interested in such areas of geometric and algebraic topology, functional analysis, differential equations, and applied mathematics. It is a sharply focused and highly readable view of nonlinear analysis by a practicing topologist who has seen a clear path to understanding.
"For the topology-minded reader, the book indeed has a lot to offer: written in a very personal, eloquent and instructive style it makes one of the highlights of nonlinear analysis accessible to a wide audience."-Monatshefte fur Mathematik (2006)
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"The basic goal of this book is to explain, prove and apply a famous result in bifurcation theory called the Krasnoselski-Rabinowitz theorem. ... a large portion of this book should be reasonably understandable even to upper-level undergraduates with a good real analysis course under their belts; certainly a beginning graduate student should find this book quite comprehensible, very informative, and enjoyable as well. The author deserves both congratulations and thanks for making such nontrivial mathematics so readily accessible." (Mark Hunacek, MAA Reviews, February, 2015)