Alle Infos zum eBook verschenken
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A comprehensive introduction to various numerical methods used in computational finance today Quantitative skills are a prerequisite for anyone working in finance or beginning a career in the field, as well as risk managers. A thorough grounding in numerical methods is necessary, as is the ability to assess their quality, advantages, and limitations. This book offers a thorough introduction to each method, revealing the numerical traps that practitioners frequently fall into. Each method is referenced with practical, real-world examples in the areas of valuation, risk analysis, and calibration…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 10.79MB
- Daniel J. DuffyNumerical Methods in Computational Finance (eBook, ePUB)71,99 €
- Ed MccarthyFoundations of Computational Finance with MATLAB (eBook, ePUB)24,99 €
- Damiano BrigoCredit Models and the Crisis (eBook, ePUB)30,99 €
- Umberto CherubiniDynamic Copula Methods in Finance (eBook, ePUB)73,99 €
- Juan RamirezAccounting for Derivatives (eBook, ePUB)74,99 €
- Iain J. ClarkForeign Exchange Option Pricing (eBook, ePUB)71,99 €
- The Handbook of Insurance-Linked Securities (eBook, ePUB)91,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Jossey-Bass
- Seitenzahl: 336
- Erscheinungstermin: 13. August 2013
- Englisch
- ISBN-13: 9781119973492
- Artikelnr.: 39477810
- Verlag: Jossey-Bass
- Seitenzahl: 336
- Erscheinungstermin: 13. August 2013
- Englisch
- ISBN-13: 9781119973492
- Artikelnr.: 39477810
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
218 14.1.2 Spearman's
218 14.1.3 Kendall's
220 14.1.4 Other Measures 221 14.2 Copulas 221 14.2.1 Basic Concepts 222 14.2.2 Important Copula Functions 222 14.2.3 Parameter estimation and sampling 229 14.2.4 Default Probabilities for Credit Derivatives 234 15 Parameter Calibration and Inverse Problems 239 15.1 Implied Black-Scholes Volatilities 239 15.2 Calibration Problems for Yield Curves 240 15.3 Reversion Speed and Volatility 245 15.4 Local Volatility 245 15.4.1 Dupire's Inversion Formula 246 15.4.2 Identifying Local Volatility 246 15.4.3 Results 247 15.5 Identifying Parameters in Volatility Models 248 15.5.1 Model Calibration for the FTSE- 100 249 16 Optimization Techniques 253 16.1 Model Calibration and Optimization 255 16.1.1 Gradient-Based Algorithms for Nonlinear Least Squares Problems 256 16.2 Heuristically Inspired Algorithms 258 16.2.1 Simulated Annealing 259 16.2.2 Differential Evolution 260 16.3 A Hybrid Algorithm for Heston Model Calibration 261 16.4 Portfolio Optimization 265 17 Risk Management 269 17.1 Value at Risk and Expected Shortfall 269 17.1.1 Parametric VaR 270 17.1.2 Historical VaR 272 17.1.3 Monte Carlo VaR 273 17.1.4 Individual and Contribution VaR 274 17.2 Principal Component Analysis 276 17.2.1 Principal Component Analysis for Non-scalar Risk Factors 276 17.2.2 Principal Components for Fast Valuation 277 17.3 Extreme Value Theory 278 18 Quantitative Finance on Parallel Architectures 285 18.1 A Short Introduction to Parallel Computing 285 18.2 Different Levels of Parallelization 288 18.3 GPU Programming 288 18.3.1 CUDA and OpenCL 289 18.3.2 Memory 289 18.4 Parallelization of Single Instrument Valuations using (Q)MC 290 18.5 Parallelization of Hybrid Calibration Algorithms 291 18.5.1 Implementation Details 292 18.5.2 Results 295 19 Building Large Software Systems for the Financial Industry 297 Bibliography 301 Index 307
218 14.1.2 Spearman's
218 14.1.3 Kendall's
220 14.1.4 Other Measures 221 14.2 Copulas 221 14.2.1 Basic Concepts 222 14.2.2 Important Copula Functions 222 14.2.3 Parameter estimation and sampling 229 14.2.4 Default Probabilities for Credit Derivatives 234 15 Parameter Calibration and Inverse Problems 239 15.1 Implied Black-Scholes Volatilities 239 15.2 Calibration Problems for Yield Curves 240 15.3 Reversion Speed and Volatility 245 15.4 Local Volatility 245 15.4.1 Dupire's Inversion Formula 246 15.4.2 Identifying Local Volatility 246 15.4.3 Results 247 15.5 Identifying Parameters in Volatility Models 248 15.5.1 Model Calibration for the FTSE- 100 249 16 Optimization Techniques 253 16.1 Model Calibration and Optimization 255 16.1.1 Gradient-Based Algorithms for Nonlinear Least Squares Problems 256 16.2 Heuristically Inspired Algorithms 258 16.2.1 Simulated Annealing 259 16.2.2 Differential Evolution 260 16.3 A Hybrid Algorithm for Heston Model Calibration 261 16.4 Portfolio Optimization 265 17 Risk Management 269 17.1 Value at Risk and Expected Shortfall 269 17.1.1 Parametric VaR 270 17.1.2 Historical VaR 272 17.1.3 Monte Carlo VaR 273 17.1.4 Individual and Contribution VaR 274 17.2 Principal Component Analysis 276 17.2.1 Principal Component Analysis for Non-scalar Risk Factors 276 17.2.2 Principal Components for Fast Valuation 277 17.3 Extreme Value Theory 278 18 Quantitative Finance on Parallel Architectures 285 18.1 A Short Introduction to Parallel Computing 285 18.2 Different Levels of Parallelization 288 18.3 GPU Programming 288 18.3.1 CUDA and OpenCL 289 18.3.2 Memory 289 18.4 Parallelization of Single Instrument Valuations using (Q)MC 290 18.5 Parallelization of Hybrid Calibration Algorithms 291 18.5.1 Implementation Details 292 18.5.2 Results 295 19 Building Large Software Systems for the Financial Industry 297 Bibliography 301 Index 307