59,95 €
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
30 °P sammeln
59,95 €
Als Download kaufen
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
30 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
30 °P sammeln
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This textbook intends to serve as a first course in abstract algebra. The selection of topics serves both of the common trends in such a course: a balanced introduction to groups, rings, and fields; or a course that primarily emphasizes group theory. This book offers a unique feature in the lists of projects at the end of each section.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 13.17MB
Andere Kunden interessierten sich auch für
- Stephen LovettAbstract Algebra (eBook, PDF)59,95 €
- Alan HorwitzEllipses Inscribed in, and Circumscribed about, Quadrilaterals (eBook, ePUB)74,95 €
- Steven J. RosenbergAn Invitation to Abstract Algebra (eBook, ePUB)59,95 €
- The Psychology of Insecurity (eBook, ePUB)45,95 €
- Fundamentals of Group Process Observation (eBook, ePUB)37,95 €
- Janus ThomysBCC-Algebras (eBook, ePUB)52,95 €
- Joseph A. GallianContemporary Abstract Algebra (eBook, ePUB)88,95 €
-
-
-
This textbook intends to serve as a first course in abstract algebra. The selection of topics serves both of the common trends in such a course: a balanced introduction to groups, rings, and fields; or a course that primarily emphasizes group theory. This book offers a unique feature in the lists of projects at the end of each section.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 569
- Erscheinungstermin: 5. Juli 2022
- Englisch
- ISBN-13: 9781000605525
- Artikelnr.: 64061533
- Verlag: Taylor & Francis
- Seitenzahl: 569
- Erscheinungstermin: 5. Juli 2022
- Englisch
- ISBN-13: 9781000605525
- Artikelnr.: 64061533
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Stephen Lovett is an associate professor of mathematics at Wheaton College. He earned a PhD from Northeastern University. He is a member of the Mathematical Association of America, American Mathematical Society, and Association of Christians in the Mathematical Sciences.. His research interests include commutative algebra, algebraic geometry, differential geometry, cryptography, and discrete dynamical systems. Dr. Lovett's other books are: Differential Geometry of Curves and Surfaces, Third Edition with Thomas F. Banchoff, Differential Geometry of Manifolds, Second Edition, and Transition to Advanced Mathematics, with Danilo R. Diedrichs, all from CRC Press.
1. Groups. 1.1. Symmetries of a Regular Polygon. 1.2. Introduction to Groups. 1.3. Properties of Group Elements. 1.4. Concept of a Classification Theorem. 1.5. Symmetric Groups. 1.6. Subgroups. 1.7. Abstract Subgroups. 1.8. Lattice of Subgroups. 1.9. Group Homomorphisms. 1.10. Group Presentations. 1.11. Groups in Geometry. 1.12. Diffie-Hellman Public Key. 1.13. Semigroups and Monoids. 1.14. Projects. 2. Quotient Groups. 2.1. Cosets and Lagrange's Theorem. 2.2. Conjugacy and Normal Subgroups. 2.3. Quotient Groups. 2.4. Isomorphism Theorems. 2.5. Fundamental Theorem of Finitely Generated Abelian Groups. 2.6. Projects. 3. Rings. 3.1. Introduction to Rings. 3.2. Rings Generated by Elements. 3.3. Matrix Rings. 3.4. Ring Homomorphisms. 3.5. Ideals. 3.6. Operations on Ideals. 3.7. Quotient Rings. 3.8. Maximal Ideals and Prime Ideals. 3.9. Projects. 4. Divisibility in Integral Domains. 4.1. Divisibility in Commutative Rings. 4.2. Rings of Fractions. 4.3. Euclidean Domains. 4.4. Unique Factorization Domains. 4.5. Factorization of Polynomials. 4.6. RSA Cryptography. 4.7. Algebraic Integers. 4.8. Projects. 5. Field Extensions. 5.1. Introduction to Field Extensions. 5.2. Algebraic and Transcendental Elements. 5.3. Algebraic Extensions. 5.4. Solving Cubic and Quartic Equations. 5.5. Constructible Numbers. 5.6. Cyclotomic Extensions. 5.7. Splitting Fields and Algebraic Closure. 5.8. Finite Fields. 5.9. Projects. 6. Topics in Group Theory. 6.1. Introduction to Group Actions. 6.2. Orbits and Stabilizers. 6.3. Transitive Group Actions. 6.4. Groups Acting on Themselves. 6.5. Sylow's Theorem. 6.6. Semidirect Product. 6.7. Classification Theorems. A. Appendix. Bibliography. Index.
1. Groups. 1.1. Symmetries of a Regular Polygon. 1.2. Introduction to
Groups. 1.3. Properties of Group Elements. 1.4. Concept of a Classification
Theorem. 1.5. Symmetric Groups. 1.6. Subgroups. 1.7. Abstract Subgroups.
1.8. Lattice of Subgroups. 1.9. Group Homomorphisms. 1.10. Group
Presentations. 1.11. Groups in Geometry. 1.12. Diffie-Hellman Public Key.
1.13. Semigroups and Monoids. 1.14. Projects. 2. Quotient Groups. 2.1.
Cosets and Lagrange's Theorem. 2.2. Conjugacy and Normal Subgroups. 2.3.
Quotient Groups. 2.4. Isomorphism Theorems. 2.5. Fundamental Theorem of
Finitely Generated Abelian Groups. 2.6. Projects. 3. Rings. 3.1.
Introduction to Rings. 3.2. Rings Generated by Elements. 3.3. Matrix Rings.
3.4. Ring Homomorphisms. 3.5. Ideals. 3.6. Operations on Ideals. 3.7.
Quotient Rings. 3.8. Maximal Ideals and Prime Ideals. 3.9. Projects. 4.
Divisibility in Integral Domains. 4.1. Divisibility in Commutative Rings.
4.2. Rings of Fractions. 4.3. Euclidean Domains. 4.4. Unique Factorization
Domains. 4.5. Factorization of Polynomials. 4.6. RSA Cryptography. 4.7.
Algebraic Integers. 4.8. Projects. 5. Field Extensions. 5.1. Introduction
to Field Extensions. 5.2. Algebraic and Transcendental Elements. 5.3.
Algebraic Extensions. 5.4. Solving Cubic and Quartic Equations. 5.5.
Constructible Numbers. 5.6. Cyclotomic Extensions. 5.7. Splitting Fields
and Algebraic Closure. 5.8. Finite Fields. 5.9. Projects. 6. Topics in
Group Theory. 6.1. Introduction to Group Actions. 6.2. Orbits and
Stabilizers. 6.3. Transitive Group Actions. 6.4. Groups Acting on
Themselves. 6.5. Sylow's Theorem. 6.6. Semidirect Product. 6.7.
Classification Theorems. A. Appendix. Bibliography. Index.
Groups. 1.3. Properties of Group Elements. 1.4. Concept of a Classification
Theorem. 1.5. Symmetric Groups. 1.6. Subgroups. 1.7. Abstract Subgroups.
1.8. Lattice of Subgroups. 1.9. Group Homomorphisms. 1.10. Group
Presentations. 1.11. Groups in Geometry. 1.12. Diffie-Hellman Public Key.
1.13. Semigroups and Monoids. 1.14. Projects. 2. Quotient Groups. 2.1.
Cosets and Lagrange's Theorem. 2.2. Conjugacy and Normal Subgroups. 2.3.
Quotient Groups. 2.4. Isomorphism Theorems. 2.5. Fundamental Theorem of
Finitely Generated Abelian Groups. 2.6. Projects. 3. Rings. 3.1.
Introduction to Rings. 3.2. Rings Generated by Elements. 3.3. Matrix Rings.
3.4. Ring Homomorphisms. 3.5. Ideals. 3.6. Operations on Ideals. 3.7.
Quotient Rings. 3.8. Maximal Ideals and Prime Ideals. 3.9. Projects. 4.
Divisibility in Integral Domains. 4.1. Divisibility in Commutative Rings.
4.2. Rings of Fractions. 4.3. Euclidean Domains. 4.4. Unique Factorization
Domains. 4.5. Factorization of Polynomials. 4.6. RSA Cryptography. 4.7.
Algebraic Integers. 4.8. Projects. 5. Field Extensions. 5.1. Introduction
to Field Extensions. 5.2. Algebraic and Transcendental Elements. 5.3.
Algebraic Extensions. 5.4. Solving Cubic and Quartic Equations. 5.5.
Constructible Numbers. 5.6. Cyclotomic Extensions. 5.7. Splitting Fields
and Algebraic Closure. 5.8. Finite Fields. 5.9. Projects. 6. Topics in
Group Theory. 6.1. Introduction to Group Actions. 6.2. Orbits and
Stabilizers. 6.3. Transitive Group Actions. 6.4. Groups Acting on
Themselves. 6.5. Sylow's Theorem. 6.6. Semidirect Product. 6.7.
Classification Theorems. A. Appendix. Bibliography. Index.
1. Groups. 1.1. Symmetries of a Regular Polygon. 1.2. Introduction to Groups. 1.3. Properties of Group Elements. 1.4. Concept of a Classification Theorem. 1.5. Symmetric Groups. 1.6. Subgroups. 1.7. Abstract Subgroups. 1.8. Lattice of Subgroups. 1.9. Group Homomorphisms. 1.10. Group Presentations. 1.11. Groups in Geometry. 1.12. Diffie-Hellman Public Key. 1.13. Semigroups and Monoids. 1.14. Projects. 2. Quotient Groups. 2.1. Cosets and Lagrange's Theorem. 2.2. Conjugacy and Normal Subgroups. 2.3. Quotient Groups. 2.4. Isomorphism Theorems. 2.5. Fundamental Theorem of Finitely Generated Abelian Groups. 2.6. Projects. 3. Rings. 3.1. Introduction to Rings. 3.2. Rings Generated by Elements. 3.3. Matrix Rings. 3.4. Ring Homomorphisms. 3.5. Ideals. 3.6. Operations on Ideals. 3.7. Quotient Rings. 3.8. Maximal Ideals and Prime Ideals. 3.9. Projects. 4. Divisibility in Integral Domains. 4.1. Divisibility in Commutative Rings. 4.2. Rings of Fractions. 4.3. Euclidean Domains. 4.4. Unique Factorization Domains. 4.5. Factorization of Polynomials. 4.6. RSA Cryptography. 4.7. Algebraic Integers. 4.8. Projects. 5. Field Extensions. 5.1. Introduction to Field Extensions. 5.2. Algebraic and Transcendental Elements. 5.3. Algebraic Extensions. 5.4. Solving Cubic and Quartic Equations. 5.5. Constructible Numbers. 5.6. Cyclotomic Extensions. 5.7. Splitting Fields and Algebraic Closure. 5.8. Finite Fields. 5.9. Projects. 6. Topics in Group Theory. 6.1. Introduction to Group Actions. 6.2. Orbits and Stabilizers. 6.3. Transitive Group Actions. 6.4. Groups Acting on Themselves. 6.5. Sylow's Theorem. 6.6. Semidirect Product. 6.7. Classification Theorems. A. Appendix. Bibliography. Index.
1. Groups. 1.1. Symmetries of a Regular Polygon. 1.2. Introduction to
Groups. 1.3. Properties of Group Elements. 1.4. Concept of a Classification
Theorem. 1.5. Symmetric Groups. 1.6. Subgroups. 1.7. Abstract Subgroups.
1.8. Lattice of Subgroups. 1.9. Group Homomorphisms. 1.10. Group
Presentations. 1.11. Groups in Geometry. 1.12. Diffie-Hellman Public Key.
1.13. Semigroups and Monoids. 1.14. Projects. 2. Quotient Groups. 2.1.
Cosets and Lagrange's Theorem. 2.2. Conjugacy and Normal Subgroups. 2.3.
Quotient Groups. 2.4. Isomorphism Theorems. 2.5. Fundamental Theorem of
Finitely Generated Abelian Groups. 2.6. Projects. 3. Rings. 3.1.
Introduction to Rings. 3.2. Rings Generated by Elements. 3.3. Matrix Rings.
3.4. Ring Homomorphisms. 3.5. Ideals. 3.6. Operations on Ideals. 3.7.
Quotient Rings. 3.8. Maximal Ideals and Prime Ideals. 3.9. Projects. 4.
Divisibility in Integral Domains. 4.1. Divisibility in Commutative Rings.
4.2. Rings of Fractions. 4.3. Euclidean Domains. 4.4. Unique Factorization
Domains. 4.5. Factorization of Polynomials. 4.6. RSA Cryptography. 4.7.
Algebraic Integers. 4.8. Projects. 5. Field Extensions. 5.1. Introduction
to Field Extensions. 5.2. Algebraic and Transcendental Elements. 5.3.
Algebraic Extensions. 5.4. Solving Cubic and Quartic Equations. 5.5.
Constructible Numbers. 5.6. Cyclotomic Extensions. 5.7. Splitting Fields
and Algebraic Closure. 5.8. Finite Fields. 5.9. Projects. 6. Topics in
Group Theory. 6.1. Introduction to Group Actions. 6.2. Orbits and
Stabilizers. 6.3. Transitive Group Actions. 6.4. Groups Acting on
Themselves. 6.5. Sylow's Theorem. 6.6. Semidirect Product. 6.7.
Classification Theorems. A. Appendix. Bibliography. Index.
Groups. 1.3. Properties of Group Elements. 1.4. Concept of a Classification
Theorem. 1.5. Symmetric Groups. 1.6. Subgroups. 1.7. Abstract Subgroups.
1.8. Lattice of Subgroups. 1.9. Group Homomorphisms. 1.10. Group
Presentations. 1.11. Groups in Geometry. 1.12. Diffie-Hellman Public Key.
1.13. Semigroups and Monoids. 1.14. Projects. 2. Quotient Groups. 2.1.
Cosets and Lagrange's Theorem. 2.2. Conjugacy and Normal Subgroups. 2.3.
Quotient Groups. 2.4. Isomorphism Theorems. 2.5. Fundamental Theorem of
Finitely Generated Abelian Groups. 2.6. Projects. 3. Rings. 3.1.
Introduction to Rings. 3.2. Rings Generated by Elements. 3.3. Matrix Rings.
3.4. Ring Homomorphisms. 3.5. Ideals. 3.6. Operations on Ideals. 3.7.
Quotient Rings. 3.8. Maximal Ideals and Prime Ideals. 3.9. Projects. 4.
Divisibility in Integral Domains. 4.1. Divisibility in Commutative Rings.
4.2. Rings of Fractions. 4.3. Euclidean Domains. 4.4. Unique Factorization
Domains. 4.5. Factorization of Polynomials. 4.6. RSA Cryptography. 4.7.
Algebraic Integers. 4.8. Projects. 5. Field Extensions. 5.1. Introduction
to Field Extensions. 5.2. Algebraic and Transcendental Elements. 5.3.
Algebraic Extensions. 5.4. Solving Cubic and Quartic Equations. 5.5.
Constructible Numbers. 5.6. Cyclotomic Extensions. 5.7. Splitting Fields
and Algebraic Closure. 5.8. Finite Fields. 5.9. Projects. 6. Topics in
Group Theory. 6.1. Introduction to Group Actions. 6.2. Orbits and
Stabilizers. 6.3. Transitive Group Actions. 6.4. Groups Acting on
Themselves. 6.5. Sylow's Theorem. 6.6. Semidirect Product. 6.7.
Classification Theorems. A. Appendix. Bibliography. Index.