Acoustic Emission and Durability of Composite Materials (eBook, PDF)
Acoustic Emission and Durability of Composite Materials (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
In this book, two kinds of analysis based on acoustic emission recorded during mechanical tests are investigated. In the first, individual, analysis, acoustic signature of each damage mechanism is characterized. So with a clustering method, AE signals that have similar shapes or similar features can be group together into a cluster. Afterwards, each cluster can be linked with a main damage. The second analysis is based on a global AE analysis, on the investigation of liberated energy, with a view to identify a critical point. So beyond this characteristic point, the criticality can be modeled with a power-law in order to evaluate time to failure.…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 18.96MB
- Nathalie GodinAcoustic Emission and Durability of Composite Materials (eBook, ePUB)139,99 €
- Marco GigliottiMechanical Behavior of Organic Matrix Composites (eBook, PDF)139,99 €
- Mechanical Characterization of Materials and Wave Dispersion (eBook, PDF)243,99 €
- John N. LalenaPrinciples of Inorganic Materials Design (eBook, PDF)170,99 €
- Developments in Strategic Materials and Computational Design II, Volume 32, Issue 10 (eBook, PDF)79,99 €
- Molecular Materials (eBook, PDF)98,99 €
- Advanced Theranostic Materials (eBook, PDF)171,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 208
- Erscheinungstermin: 15. Februar 2018
- Englisch
- ISBN-13: 9781119510604
- Artikelnr.: 52552104
- Verlag: John Wiley & Sons
- Seitenzahl: 208
- Erscheinungstermin: 15. Februar 2018
- Englisch
- ISBN-13: 9781119510604
- Artikelnr.: 52552104
Chapter 1 Acoustic Emission: Definition and Overview 1
1.1 Overview 1
1.2 Acoustic waves 8
1.2.1 Infinite medium: volume waves 8
1.2.2 Semi-infinite medium: surface waves 9
1.2.3 Guided waves 9
1.2.4 Anisotropic medium and wave attenuation 10
1.3 The sensors and acquisition system 12
1.4 Location of sources 16
1.5 The extracted descriptors from the AE signal 21
1.5.1 Time domain descriptors 22
1.5.2 Frequency domain descriptors 26
1.5.3 Time-frequency analysis 30
1.6 The different analyses of AE data 32
1.6.1 Conventional analysis: qualitative analysis 32
1.6.2 Multivariable statistical analysis: application of pattern
recognition techniques 42
1.7 Added value of quantitative acoustic emission 55
Chapter 2 Identification of the Acoustic Signature of Damage Mechanisms 59
2.1 Selection of signals for analysis 59
2.2 Acoustic signature of fiber rupture: model materials 63
2.2.1 Characterization of the fiber at the scale of the bundle 64
2.2.2 At the microcomposite scale 69
2.2.3 At the minicomposite scale 72
2.3 Discrimination using temporal descriptors of damage mechanisms in
composites: single-descriptor analysis 75
2.4 Identification of the acoustic signature of composite damage mechanisms
from a frequency descriptor 79
2.5 Identification of the acoustic signature of composite damage mechanisms
using a time/frequency analysis 81
2.6 Modal acoustic emission 82
2.7 Unsupervised multivariable statistical analysis 84
2.7.1 Damage identification for organic matrix composites 85
2.7.2 Static fatigue damage sequence identification for a ceramic matrix
composite 89
2.7.3 Identification of the cyclic fatigue damage sequence for a ceramic
matrix composite 92
2.7.4 Validation of cluster labeling 96
2.8 Supervised multivariable statistical analysis 100
2.8.1 Library created from data based on model materials 100
2.8.2 Library created from structured data by unsupervised classification
103
2.9 The limits of multivariable statistical analysis based on pattern
recognition techniques 104
2.9.1 Performance of algorithms 105
2.9.2 Influence of the acquisition conditions and the geometry of the
samples 113
2.10 Contribution of modeling: towards quantitative acoustic emission 120
Chapter 3 Lifetime Estimation 123
3.1 Prognostic models: physical or data-oriented models 125
3.2 Generalities on power laws: link with seismology 128
3.3 Acoustic energy 133
3.3.1 Definition of acoustic energy 133
3.3.2 Taking into account coupling and definition of equivalent energy 134
3.4 Identification of critical times or characteristic times in long-term
tests: towards lifetime prediction 136
3.4.1 The R AE emission coefficient 137
3.4.2 Optimal circle contribution: highlighting the critical region 139
3.4.3 The attenuation coefficient B 140
3.4.4 The R LU coefficient for cyclic fatigue tests 142
3.4.5 The coupling between acoustic energy and mechanical energy: the
Sentry function 144
3.5 Simulation of the release of energy using a power law: prediction of
the rupture time 146
Conclusion 151
Bibliography 153
Index 181
Chapter 1 Acoustic Emission: Definition and Overview 1
1.1 Overview 1
1.2 Acoustic waves 8
1.2.1 Infinite medium: volume waves 8
1.2.2 Semi-infinite medium: surface waves 9
1.2.3 Guided waves 9
1.2.4 Anisotropic medium and wave attenuation 10
1.3 The sensors and acquisition system 12
1.4 Location of sources 16
1.5 The extracted descriptors from the AE signal 21
1.5.1 Time domain descriptors 22
1.5.2 Frequency domain descriptors 26
1.5.3 Time-frequency analysis 30
1.6 The different analyses of AE data 32
1.6.1 Conventional analysis: qualitative analysis 32
1.6.2 Multivariable statistical analysis: application of pattern
recognition techniques 42
1.7 Added value of quantitative acoustic emission 55
Chapter 2 Identification of the Acoustic Signature of Damage Mechanisms 59
2.1 Selection of signals for analysis 59
2.2 Acoustic signature of fiber rupture: model materials 63
2.2.1 Characterization of the fiber at the scale of the bundle 64
2.2.2 At the microcomposite scale 69
2.2.3 At the minicomposite scale 72
2.3 Discrimination using temporal descriptors of damage mechanisms in
composites: single-descriptor analysis 75
2.4 Identification of the acoustic signature of composite damage mechanisms
from a frequency descriptor 79
2.5 Identification of the acoustic signature of composite damage mechanisms
using a time/frequency analysis 81
2.6 Modal acoustic emission 82
2.7 Unsupervised multivariable statistical analysis 84
2.7.1 Damage identification for organic matrix composites 85
2.7.2 Static fatigue damage sequence identification for a ceramic matrix
composite 89
2.7.3 Identification of the cyclic fatigue damage sequence for a ceramic
matrix composite 92
2.7.4 Validation of cluster labeling 96
2.8 Supervised multivariable statistical analysis 100
2.8.1 Library created from data based on model materials 100
2.8.2 Library created from structured data by unsupervised classification
103
2.9 The limits of multivariable statistical analysis based on pattern
recognition techniques 104
2.9.1 Performance of algorithms 105
2.9.2 Influence of the acquisition conditions and the geometry of the
samples 113
2.10 Contribution of modeling: towards quantitative acoustic emission 120
Chapter 3 Lifetime Estimation 123
3.1 Prognostic models: physical or data-oriented models 125
3.2 Generalities on power laws: link with seismology 128
3.3 Acoustic energy 133
3.3.1 Definition of acoustic energy 133
3.3.2 Taking into account coupling and definition of equivalent energy 134
3.4 Identification of critical times or characteristic times in long-term
tests: towards lifetime prediction 136
3.4.1 The R AE emission coefficient 137
3.4.2 Optimal circle contribution: highlighting the critical region 139
3.4.3 The attenuation coefficient B 140
3.4.4 The R LU coefficient for cyclic fatigue tests 142
3.4.5 The coupling between acoustic energy and mechanical energy: the
Sentry function 144
3.5 Simulation of the release of energy using a power law: prediction of
the rupture time 146
Conclusion 151
Bibliography 153
Index 181