52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
26 °P sammeln
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
26 °P sammeln
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
26 °P sammeln
Jetzt verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
26 °P sammeln
  • Format: PDF

As an extension of the traditional MMSE, the minimum mean p-power error (MMPE) criterion has shown superior performance in many applications of adaptive filtering. This book aims to provide a comprehensive introduction of the MMPE and related adaptive filtering algorithms.

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 17.23MB
Produktbeschreibung
As an extension of the traditional MMSE, the minimum mean p-power error (MMPE) criterion has shown superior performance in many applications of adaptive filtering. This book aims to provide a comprehensive introduction of the MMPE and related adaptive filtering algorithms.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Wentao Ma received a BSc in Mathematics and Applied Mathematics from Shannxi University of Technology in 2003, an MSc in Computing Mathematics from Huazhong University of Science and Technology in 2008, and a Ph.D. in Information and Communication Engineering from Xi'an Jiaotong University, in 2015. Currently, he is an associate professor with the School of Electrical Engineering, Xi'an University of Technology, Xi'an, China. His research interests include statistical signal processing, machine learning, artificial intelligence, and their applications in Electrical and Computer Engineering. He has published over 50 papers in various journals and conference proceedings. He is a member of IEEE, IEEE PES, and CAA.

Badong Chen received BSc and MSc degrees in Control Theory and Engineering from Chongqing University in 1997 and 2003 respectively. He also received his Ph.D. in Computer Science and Technology from Tsinghua University in 2008. He was a postdoctoral associate at the University of Florida Computational Neuro Engineering Laboratory (CNEL) from 2010 to 2012. He was a visiting research scientist at the Nanyang Technological University (NTU), Singapore, in 2015. He also served as a senior research fellow with The Hong Kong Polytechnic University in 2017. Currently, he is a professor at the Institute of Artificial Intelligence and Robotics (IAIR), Xi'an Jiaotong University. His research interests include signal processing, machine learning, artificial intelligence, neural engineering, and robotics. He has published four books and over 300 papers in various journals and conference proceedings. He is an IEEE Senior Member and has served as a Technical Committee Member of IEEE SPS Machine Learning for Signal Processing (MLSP). He has been an associate editor of: IEEE Transactions on Circuits and Systems for Video Technology, IEEE Transactions on Cognitive and Developmental Systems, IEEE Transactions on Neural Networks and Learning Systems, Journal of The Franklin Institute and Neural Networks. He has also been on the editorial board of Entropy.