Adaptive Radar Signal Processing (eBook, PDF)
Redaktion: Haykin, Simon
118,99 €
118,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
118,99 €
Als Download kaufen
118,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
118,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Adaptive Radar Signal Processing (eBook, PDF)
Redaktion: Haykin, Simon
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This collaborative work presents the results of over twenty years of pioneering research by Professor Simon Haykin and his colleagues, dealing with the use of adaptive radar signal processing to account for the nonstationary nature of the environment. These results have profound implications for defense-related signal processing and remote sensing. References are provided in each chapter guiding the reader to the original research on which this book is based.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 8.46MB
Andere Kunden interessierten sich auch für
- He YouRadar Data Processing With Applications (eBook, PDF)139,99 €
- Baixiao ChenSynthetic Impulse and Aperture Radar (SIAR) (eBook, PDF)139,99 €
- Xiaolan QiuBistatic SAR Data Processing Algorithms (eBook, PDF)128,99 €
- Caner OzdemirInverse Synthetic Aperture Radar Imaging With MATLAB Algorithms (eBook, PDF)119,99 €
- Nadav LevanonRadar Signals (eBook, PDF)152,99 €
- Bistatic Radar (eBook, PDF)123,99 €
- David J. DanielsEM Detection of Concealed Targets (eBook, PDF)136,99 €
-
-
-
This collaborative work presents the results of over twenty years of pioneering research by Professor Simon Haykin and his colleagues, dealing with the use of adaptive radar signal processing to account for the nonstationary nature of the environment. These results have profound implications for defense-related signal processing and remote sensing. References are provided in each chapter guiding the reader to the original research on which this book is based.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Jossey-Bass
- Erscheinungstermin: 13. Dezember 2006
- Englisch
- ISBN-13: 9780470069110
- Artikelnr.: 37290130
- Verlag: Jossey-Bass
- Erscheinungstermin: 13. Dezember 2006
- Englisch
- ISBN-13: 9780470069110
- Artikelnr.: 37290130
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
SIMON HAYKIN, PhD, is Distinguished University Professor in the Department of Electrical and Computer Engineering at McMaster University. He has pioneered signal-processing techniques and systems for radar and communication applications, and authored several acclaimed textbooks. Dr. Haykin has received numerous awards for his research including Honorary Doctor of Technical Sciences from ETH Zurich, Switzerland, and the first International Union of Radio Science Henry Booker Gold Medal.
Preface xi
Contributors List xiii
1. Introduction 1
Simon Haykin
Experimental Radar Facilities 2
Organization of the Book 5
Part I Radar Spectral Analysis
2. Angle-of-Arrival Estimation in the Presence of Multipath 11
Anastasios Drosopoulos and Simon Haykin
2.1 Introduction 11
2.2 The Low-Angle Tracking Radar Problem 13
2.3 Spectrum Estimation Background 14
2.3.1 The Fundamental Equation of Spectrum Estimation 17
2.4 Thomson's Multi-Taper Method 18
2.4.1 Prolate Spheroidal Wavefunctions and Sequences 19
2.5 Test Dataset and a Comparison of Some Popular Spectrum Estimation
Procedures 23
2.5.1 Classical Spectrum Estimation 26
2.5.2 MUSIC and MFBLP 27
2.6 Multi-taper Spectrum Estimation 28
2.6.1 The Adaptive Spectrum 28
2.6.2 The Composite Spectrum 32
2.6.3 Computing the Crude, Adaptive, and Composite Spectra 33
2.7 F-Test for the Line Components 35
2.7.1 Brief Outline of the F-Test 35
2.7.2 The Point Regression Single-Line F-Test 37
2.7.3 The Integral Regression Single-Line F-Test 39
2.7.4 The Point Regression Double-Line F-Test 42
2.7.5 The Integral Regression Double-Line F-Test 46
2.7.6 Line Component Extraction 47
2.7.7 Prewhitening 54
2.7.8 Multiple Snapshots 57
2.7.9 Multiple Snapshot, Single-Line, Point-Regression F-Tests 57
2.7.10 Multiple-Snapshot, Double-Line Point-Regression F-Tests 59
2.8 Experimental Data Description for a Low-Angle Tracking Radar Study 60
2.9 Angle-of-Arrival (AOA) Estimation 63
2.10 Diffuse Multipath Spectrum Estimation 78
2.11 Discussion 85
References 88
3. Time-Frequency Analysis of Sea Clutter 91
David J. Thomson and Simon Haykin
3.1 Introduction 91
3.2 An Overview of Nonstationary Behavior and Time-Frequency Analysis 92
3.3 Theoretical Background on Nonstationarity 94
3.3.1 Multi-taper Estimates 97
3.3.2 Spectrum Estimation as an Inverse Problem 98
3.4 High-Resolution Multi-taper Spectrograms 99
3.4.1 Nonstationary Quadratic-Inverse Theory 101
3.4.2 Multi-taper Estimates of the Loève Spectrum 103
3.5 Spectrum Analysis of Radar Signals 104
3.6 Discussion 111
3.6.1 Target Detection Rooted in Learning 112
References 113
Part II Dynamic Models
4. Dynamics of Sea Clutter 119
Simon Haykin, Rembrandt Bakker, and Brian Currie
4.1 Introduction 119
4.2 Statistical Nature of Sea Clutter: Classical Approach 123
4.2.1 Background 123
4.2.2 Current Models 126
4.3 Is There a Radar Clutter Attractor? 130
4.3.1 Nonlinear Dynamics 130
4.3.2 Chaotic Invariants 132
4.3.3 Inconclusive Experimental Results on the Chaotic Invariants of Sea
Clutter 133
4.3.4 Dynamic Reconstruction 134
4.3.5 Chaos, a Self-Fulfilling Prophecy? 137
4.4 Hybrid AM/FM Model of Sea Clutter 139
4.4.1 Radar Return Plots 139
4.4.2 Rayleigh Fading 139
4.4.3 Time-Doppler Spectra 142
4.4.4 Evidence for Amplitude Modulation, Frequency Modulation, and More 144
4.4.5 Modeling Sea Clutter as a Nonstationary Complex Autoregressive
Process 146
4.5 Discussion 150
4.5.1 Nonlinear Dynamics of Sea Clutter 150
4.5.2 Autoregressive Modeling of Sea Clutter 150
4.5.3 State-Space Theory 151
4.5.4 Nonlinear Dynamical Approach Versus Classical Statistical Approach
152
4.5.5 Stochastic Chaos 153
References 155
Appendix A Specifications of the Three Sea-Clutter Sets Used in This 157
Chapter 5. Sea-Clutter Nonstationarity: The Influence of Long Waves 159
Maria Greco and Fulvio Gini
5.1 Introduction 159
5.2 Radar and Data Description 163
5.3 Statistical Data Analyses 164
5.4 Modulation of Long Waves: Hybrid AM/FM Model 169
5.5 Nonstationary AR Model 179
5.6 Parametric Analysis of Texture Process 181
5.7 Discussion 188
5.7.1 Autoregressive Modeling of Sea Clutter 189
5.7.2 Cyclostationarity of Sea Clutter 189
References 189
6. Two New Strategies for Target Detection in Sea Clutter 193
Rembrandt Bakker, Brian Currie, and Simon Haykin
6.1 Introduction 193
6.2 Bayesian Direct Filtering Procedure 195
6.2.1 Single-Target Scenario 195
6.2.2 Conditioning on Past and Future Measurements 196
6.3 Operational Details 197
6.3.1 Experimental Data 197
6.3.2 Statistics of Sea Clutter 197
6.3.3 Statistics of Target Returns 199
6.3.4 Motion Model of the Target 200
6.4 Experimental Results on the Bayesian Direct Filter 200
6.5 Additional Notes on the Bayesian Direct Filter 204
6.6 Correlation Anomally Detection Strategy 205
6.7 Experimental Comparison of the Bayesian Direct Filter and Correlation
Anomaly Receiver 206
6.7.1 Target-to-Interference Ratio 207
6.7.2 Receiver Comparison 207
6.8 Discussion 217
6.8.1 Further Research 218
References 219
Index 221
Contributors List xiii
1. Introduction 1
Simon Haykin
Experimental Radar Facilities 2
Organization of the Book 5
Part I Radar Spectral Analysis
2. Angle-of-Arrival Estimation in the Presence of Multipath 11
Anastasios Drosopoulos and Simon Haykin
2.1 Introduction 11
2.2 The Low-Angle Tracking Radar Problem 13
2.3 Spectrum Estimation Background 14
2.3.1 The Fundamental Equation of Spectrum Estimation 17
2.4 Thomson's Multi-Taper Method 18
2.4.1 Prolate Spheroidal Wavefunctions and Sequences 19
2.5 Test Dataset and a Comparison of Some Popular Spectrum Estimation
Procedures 23
2.5.1 Classical Spectrum Estimation 26
2.5.2 MUSIC and MFBLP 27
2.6 Multi-taper Spectrum Estimation 28
2.6.1 The Adaptive Spectrum 28
2.6.2 The Composite Spectrum 32
2.6.3 Computing the Crude, Adaptive, and Composite Spectra 33
2.7 F-Test for the Line Components 35
2.7.1 Brief Outline of the F-Test 35
2.7.2 The Point Regression Single-Line F-Test 37
2.7.3 The Integral Regression Single-Line F-Test 39
2.7.4 The Point Regression Double-Line F-Test 42
2.7.5 The Integral Regression Double-Line F-Test 46
2.7.6 Line Component Extraction 47
2.7.7 Prewhitening 54
2.7.8 Multiple Snapshots 57
2.7.9 Multiple Snapshot, Single-Line, Point-Regression F-Tests 57
2.7.10 Multiple-Snapshot, Double-Line Point-Regression F-Tests 59
2.8 Experimental Data Description for a Low-Angle Tracking Radar Study 60
2.9 Angle-of-Arrival (AOA) Estimation 63
2.10 Diffuse Multipath Spectrum Estimation 78
2.11 Discussion 85
References 88
3. Time-Frequency Analysis of Sea Clutter 91
David J. Thomson and Simon Haykin
3.1 Introduction 91
3.2 An Overview of Nonstationary Behavior and Time-Frequency Analysis 92
3.3 Theoretical Background on Nonstationarity 94
3.3.1 Multi-taper Estimates 97
3.3.2 Spectrum Estimation as an Inverse Problem 98
3.4 High-Resolution Multi-taper Spectrograms 99
3.4.1 Nonstationary Quadratic-Inverse Theory 101
3.4.2 Multi-taper Estimates of the Loève Spectrum 103
3.5 Spectrum Analysis of Radar Signals 104
3.6 Discussion 111
3.6.1 Target Detection Rooted in Learning 112
References 113
Part II Dynamic Models
4. Dynamics of Sea Clutter 119
Simon Haykin, Rembrandt Bakker, and Brian Currie
4.1 Introduction 119
4.2 Statistical Nature of Sea Clutter: Classical Approach 123
4.2.1 Background 123
4.2.2 Current Models 126
4.3 Is There a Radar Clutter Attractor? 130
4.3.1 Nonlinear Dynamics 130
4.3.2 Chaotic Invariants 132
4.3.3 Inconclusive Experimental Results on the Chaotic Invariants of Sea
Clutter 133
4.3.4 Dynamic Reconstruction 134
4.3.5 Chaos, a Self-Fulfilling Prophecy? 137
4.4 Hybrid AM/FM Model of Sea Clutter 139
4.4.1 Radar Return Plots 139
4.4.2 Rayleigh Fading 139
4.4.3 Time-Doppler Spectra 142
4.4.4 Evidence for Amplitude Modulation, Frequency Modulation, and More 144
4.4.5 Modeling Sea Clutter as a Nonstationary Complex Autoregressive
Process 146
4.5 Discussion 150
4.5.1 Nonlinear Dynamics of Sea Clutter 150
4.5.2 Autoregressive Modeling of Sea Clutter 150
4.5.3 State-Space Theory 151
4.5.4 Nonlinear Dynamical Approach Versus Classical Statistical Approach
152
4.5.5 Stochastic Chaos 153
References 155
Appendix A Specifications of the Three Sea-Clutter Sets Used in This 157
Chapter 5. Sea-Clutter Nonstationarity: The Influence of Long Waves 159
Maria Greco and Fulvio Gini
5.1 Introduction 159
5.2 Radar and Data Description 163
5.3 Statistical Data Analyses 164
5.4 Modulation of Long Waves: Hybrid AM/FM Model 169
5.5 Nonstationary AR Model 179
5.6 Parametric Analysis of Texture Process 181
5.7 Discussion 188
5.7.1 Autoregressive Modeling of Sea Clutter 189
5.7.2 Cyclostationarity of Sea Clutter 189
References 189
6. Two New Strategies for Target Detection in Sea Clutter 193
Rembrandt Bakker, Brian Currie, and Simon Haykin
6.1 Introduction 193
6.2 Bayesian Direct Filtering Procedure 195
6.2.1 Single-Target Scenario 195
6.2.2 Conditioning on Past and Future Measurements 196
6.3 Operational Details 197
6.3.1 Experimental Data 197
6.3.2 Statistics of Sea Clutter 197
6.3.3 Statistics of Target Returns 199
6.3.4 Motion Model of the Target 200
6.4 Experimental Results on the Bayesian Direct Filter 200
6.5 Additional Notes on the Bayesian Direct Filter 204
6.6 Correlation Anomally Detection Strategy 205
6.7 Experimental Comparison of the Bayesian Direct Filter and Correlation
Anomaly Receiver 206
6.7.1 Target-to-Interference Ratio 207
6.7.2 Receiver Comparison 207
6.8 Discussion 217
6.8.1 Further Research 218
References 219
Index 221
Preface xi
Contributors List xiii
1. Introduction 1
Simon Haykin
Experimental Radar Facilities 2
Organization of the Book 5
Part I Radar Spectral Analysis
2. Angle-of-Arrival Estimation in the Presence of Multipath 11
Anastasios Drosopoulos and Simon Haykin
2.1 Introduction 11
2.2 The Low-Angle Tracking Radar Problem 13
2.3 Spectrum Estimation Background 14
2.3.1 The Fundamental Equation of Spectrum Estimation 17
2.4 Thomson's Multi-Taper Method 18
2.4.1 Prolate Spheroidal Wavefunctions and Sequences 19
2.5 Test Dataset and a Comparison of Some Popular Spectrum Estimation
Procedures 23
2.5.1 Classical Spectrum Estimation 26
2.5.2 MUSIC and MFBLP 27
2.6 Multi-taper Spectrum Estimation 28
2.6.1 The Adaptive Spectrum 28
2.6.2 The Composite Spectrum 32
2.6.3 Computing the Crude, Adaptive, and Composite Spectra 33
2.7 F-Test for the Line Components 35
2.7.1 Brief Outline of the F-Test 35
2.7.2 The Point Regression Single-Line F-Test 37
2.7.3 The Integral Regression Single-Line F-Test 39
2.7.4 The Point Regression Double-Line F-Test 42
2.7.5 The Integral Regression Double-Line F-Test 46
2.7.6 Line Component Extraction 47
2.7.7 Prewhitening 54
2.7.8 Multiple Snapshots 57
2.7.9 Multiple Snapshot, Single-Line, Point-Regression F-Tests 57
2.7.10 Multiple-Snapshot, Double-Line Point-Regression F-Tests 59
2.8 Experimental Data Description for a Low-Angle Tracking Radar Study 60
2.9 Angle-of-Arrival (AOA) Estimation 63
2.10 Diffuse Multipath Spectrum Estimation 78
2.11 Discussion 85
References 88
3. Time-Frequency Analysis of Sea Clutter 91
David J. Thomson and Simon Haykin
3.1 Introduction 91
3.2 An Overview of Nonstationary Behavior and Time-Frequency Analysis 92
3.3 Theoretical Background on Nonstationarity 94
3.3.1 Multi-taper Estimates 97
3.3.2 Spectrum Estimation as an Inverse Problem 98
3.4 High-Resolution Multi-taper Spectrograms 99
3.4.1 Nonstationary Quadratic-Inverse Theory 101
3.4.2 Multi-taper Estimates of the Loève Spectrum 103
3.5 Spectrum Analysis of Radar Signals 104
3.6 Discussion 111
3.6.1 Target Detection Rooted in Learning 112
References 113
Part II Dynamic Models
4. Dynamics of Sea Clutter 119
Simon Haykin, Rembrandt Bakker, and Brian Currie
4.1 Introduction 119
4.2 Statistical Nature of Sea Clutter: Classical Approach 123
4.2.1 Background 123
4.2.2 Current Models 126
4.3 Is There a Radar Clutter Attractor? 130
4.3.1 Nonlinear Dynamics 130
4.3.2 Chaotic Invariants 132
4.3.3 Inconclusive Experimental Results on the Chaotic Invariants of Sea
Clutter 133
4.3.4 Dynamic Reconstruction 134
4.3.5 Chaos, a Self-Fulfilling Prophecy? 137
4.4 Hybrid AM/FM Model of Sea Clutter 139
4.4.1 Radar Return Plots 139
4.4.2 Rayleigh Fading 139
4.4.3 Time-Doppler Spectra 142
4.4.4 Evidence for Amplitude Modulation, Frequency Modulation, and More 144
4.4.5 Modeling Sea Clutter as a Nonstationary Complex Autoregressive
Process 146
4.5 Discussion 150
4.5.1 Nonlinear Dynamics of Sea Clutter 150
4.5.2 Autoregressive Modeling of Sea Clutter 150
4.5.3 State-Space Theory 151
4.5.4 Nonlinear Dynamical Approach Versus Classical Statistical Approach
152
4.5.5 Stochastic Chaos 153
References 155
Appendix A Specifications of the Three Sea-Clutter Sets Used in This 157
Chapter 5. Sea-Clutter Nonstationarity: The Influence of Long Waves 159
Maria Greco and Fulvio Gini
5.1 Introduction 159
5.2 Radar and Data Description 163
5.3 Statistical Data Analyses 164
5.4 Modulation of Long Waves: Hybrid AM/FM Model 169
5.5 Nonstationary AR Model 179
5.6 Parametric Analysis of Texture Process 181
5.7 Discussion 188
5.7.1 Autoregressive Modeling of Sea Clutter 189
5.7.2 Cyclostationarity of Sea Clutter 189
References 189
6. Two New Strategies for Target Detection in Sea Clutter 193
Rembrandt Bakker, Brian Currie, and Simon Haykin
6.1 Introduction 193
6.2 Bayesian Direct Filtering Procedure 195
6.2.1 Single-Target Scenario 195
6.2.2 Conditioning on Past and Future Measurements 196
6.3 Operational Details 197
6.3.1 Experimental Data 197
6.3.2 Statistics of Sea Clutter 197
6.3.3 Statistics of Target Returns 199
6.3.4 Motion Model of the Target 200
6.4 Experimental Results on the Bayesian Direct Filter 200
6.5 Additional Notes on the Bayesian Direct Filter 204
6.6 Correlation Anomally Detection Strategy 205
6.7 Experimental Comparison of the Bayesian Direct Filter and Correlation
Anomaly Receiver 206
6.7.1 Target-to-Interference Ratio 207
6.7.2 Receiver Comparison 207
6.8 Discussion 217
6.8.1 Further Research 218
References 219
Index 221
Contributors List xiii
1. Introduction 1
Simon Haykin
Experimental Radar Facilities 2
Organization of the Book 5
Part I Radar Spectral Analysis
2. Angle-of-Arrival Estimation in the Presence of Multipath 11
Anastasios Drosopoulos and Simon Haykin
2.1 Introduction 11
2.2 The Low-Angle Tracking Radar Problem 13
2.3 Spectrum Estimation Background 14
2.3.1 The Fundamental Equation of Spectrum Estimation 17
2.4 Thomson's Multi-Taper Method 18
2.4.1 Prolate Spheroidal Wavefunctions and Sequences 19
2.5 Test Dataset and a Comparison of Some Popular Spectrum Estimation
Procedures 23
2.5.1 Classical Spectrum Estimation 26
2.5.2 MUSIC and MFBLP 27
2.6 Multi-taper Spectrum Estimation 28
2.6.1 The Adaptive Spectrum 28
2.6.2 The Composite Spectrum 32
2.6.3 Computing the Crude, Adaptive, and Composite Spectra 33
2.7 F-Test for the Line Components 35
2.7.1 Brief Outline of the F-Test 35
2.7.2 The Point Regression Single-Line F-Test 37
2.7.3 The Integral Regression Single-Line F-Test 39
2.7.4 The Point Regression Double-Line F-Test 42
2.7.5 The Integral Regression Double-Line F-Test 46
2.7.6 Line Component Extraction 47
2.7.7 Prewhitening 54
2.7.8 Multiple Snapshots 57
2.7.9 Multiple Snapshot, Single-Line, Point-Regression F-Tests 57
2.7.10 Multiple-Snapshot, Double-Line Point-Regression F-Tests 59
2.8 Experimental Data Description for a Low-Angle Tracking Radar Study 60
2.9 Angle-of-Arrival (AOA) Estimation 63
2.10 Diffuse Multipath Spectrum Estimation 78
2.11 Discussion 85
References 88
3. Time-Frequency Analysis of Sea Clutter 91
David J. Thomson and Simon Haykin
3.1 Introduction 91
3.2 An Overview of Nonstationary Behavior and Time-Frequency Analysis 92
3.3 Theoretical Background on Nonstationarity 94
3.3.1 Multi-taper Estimates 97
3.3.2 Spectrum Estimation as an Inverse Problem 98
3.4 High-Resolution Multi-taper Spectrograms 99
3.4.1 Nonstationary Quadratic-Inverse Theory 101
3.4.2 Multi-taper Estimates of the Loève Spectrum 103
3.5 Spectrum Analysis of Radar Signals 104
3.6 Discussion 111
3.6.1 Target Detection Rooted in Learning 112
References 113
Part II Dynamic Models
4. Dynamics of Sea Clutter 119
Simon Haykin, Rembrandt Bakker, and Brian Currie
4.1 Introduction 119
4.2 Statistical Nature of Sea Clutter: Classical Approach 123
4.2.1 Background 123
4.2.2 Current Models 126
4.3 Is There a Radar Clutter Attractor? 130
4.3.1 Nonlinear Dynamics 130
4.3.2 Chaotic Invariants 132
4.3.3 Inconclusive Experimental Results on the Chaotic Invariants of Sea
Clutter 133
4.3.4 Dynamic Reconstruction 134
4.3.5 Chaos, a Self-Fulfilling Prophecy? 137
4.4 Hybrid AM/FM Model of Sea Clutter 139
4.4.1 Radar Return Plots 139
4.4.2 Rayleigh Fading 139
4.4.3 Time-Doppler Spectra 142
4.4.4 Evidence for Amplitude Modulation, Frequency Modulation, and More 144
4.4.5 Modeling Sea Clutter as a Nonstationary Complex Autoregressive
Process 146
4.5 Discussion 150
4.5.1 Nonlinear Dynamics of Sea Clutter 150
4.5.2 Autoregressive Modeling of Sea Clutter 150
4.5.3 State-Space Theory 151
4.5.4 Nonlinear Dynamical Approach Versus Classical Statistical Approach
152
4.5.5 Stochastic Chaos 153
References 155
Appendix A Specifications of the Three Sea-Clutter Sets Used in This 157
Chapter 5. Sea-Clutter Nonstationarity: The Influence of Long Waves 159
Maria Greco and Fulvio Gini
5.1 Introduction 159
5.2 Radar and Data Description 163
5.3 Statistical Data Analyses 164
5.4 Modulation of Long Waves: Hybrid AM/FM Model 169
5.5 Nonstationary AR Model 179
5.6 Parametric Analysis of Texture Process 181
5.7 Discussion 188
5.7.1 Autoregressive Modeling of Sea Clutter 189
5.7.2 Cyclostationarity of Sea Clutter 189
References 189
6. Two New Strategies for Target Detection in Sea Clutter 193
Rembrandt Bakker, Brian Currie, and Simon Haykin
6.1 Introduction 193
6.2 Bayesian Direct Filtering Procedure 195
6.2.1 Single-Target Scenario 195
6.2.2 Conditioning on Past and Future Measurements 196
6.3 Operational Details 197
6.3.1 Experimental Data 197
6.3.2 Statistics of Sea Clutter 197
6.3.3 Statistics of Target Returns 199
6.3.4 Motion Model of the Target 200
6.4 Experimental Results on the Bayesian Direct Filter 200
6.5 Additional Notes on the Bayesian Direct Filter 204
6.6 Correlation Anomally Detection Strategy 205
6.7 Experimental Comparison of the Bayesian Direct Filter and Correlation
Anomaly Receiver 206
6.7.1 Target-to-Interference Ratio 207
6.7.2 Receiver Comparison 207
6.8 Discussion 217
6.8.1 Further Research 218
References 219
Index 221