Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The time has come for an assessment of the most important techniques for the fabrication of advanced catalysts. Catalyst production alone is more than a billion dollar business each year, and the product value of chemical processes using advanced catalysts is a few trillion dollars annually. This book seeks to provide a modern, materials science account of the best and most current techniques for the synthesis of advanced catalytic materials. Until now, there has been no single book which contains a definitive and comprehensive description of the important technologies for catalyst…mehr
The time has come for an assessment of the most important techniques for the fabrication of advanced catalysts. Catalyst production alone is more than a billion dollar business each year, and the product value of chemical processes using advanced catalysts is a few trillion dollars annually. This book seeks to provide a modern, materials science account of the best and most current techniques for the synthesis of advanced catalytic materials.
Until now, there has been no single book which contains a definitive and comprehensive description of the important technologies for catalyst synthesis within the context of modern materials science. Academic researchers both in the catalytic sciences and materials sciences must have the best synthesis technologies available to accomplish the preparation of solid-state materials of specific structure and morphology. Althugh the emphasis is on new synthetic techniques for catalytic applications, the bookpresents all of the important technologies for the fabrication of electronic and structural ceramics, and superconductors.
Novel Techniques for Advanced Materials
Nanostructured Materials Synthesis
Mesoporous Molecular Sieves
Pillared Clays
Heteropoly Acids
Nanostructured Supported Metal Catalysts
Nanostructured Metal Oxide Catalysts and Materials
Nanostructured Zeolite Materials
Vapor Phase Materials Synthesis
Sonochemical Materials Synthesis
Aerosol Methods of Catalyst Synthesis
Hydrodynamic Cavitational Techniques for Catalyst and Materials Synthesis
Novel Sol-Gel Methods for Catalyst Synthesis
Supercritical Methods for Materials Synthesis
Liquid Crystal Techniques for Mesoporous Materials
Micelle Techniques for Nanostructured Catalyst Preparation
Fluidized Bed Techniques in Chemical Vapor Deposition
Flame Methods of Advanced Catalyst Synthesis
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Professor William Moser is a Professor of Chemical Engineering at the Worcester Polytechnic Institute. He is also a member of the Center for Inorganic Membrane Studies at WPI. Professor Moser invented both the Cylindrical Internal Reflectance Reactors (CIR-REACTORS) and Optical Fiber coupled CIR-Reactors (OFCIR-REACTORS), which are now commercial products used for reaction monitoring in homogeneous and heterogeneous catalysis. He was recently issued a patent on remote infrared sensing using optical fiber cables connected to high pressure reactors as well as normal laboratory glassware reactors. Dr. Moser is a Fellow of the New York Academy of Sciences, and is a co-founder of the Organic Reactions Catalysis Society. He is a past Chairman of the ACS Petroleum Division. He is the editor of several books on homogeneous and heterogeneous catalysis, and has a variety of publications and patents in the catalytic and materials science fields.
Inhaltsangabe
J.C. Vartull, C.T. Kresge, W.J. Ruth, S.B. Mccullen, J.S. Beck, K.D. Schmitt, M.E. Leonowicz, J.D. Lutner, and E.W. Sheppard, Designed Synthesis of Mesoporous Molecular Sieve Systems Using Surfactant Directing Agents: Introduction. Experimental. Results and Discussion. J.B. Miller and E.I. Ko, The Role of Prehydolysis in the Preparation of Zirconia-Silica Aerogels: Introduction. Methods. Results and Discussion. F. Cavani, A. Colombo, F. Giuntoli,F. Trifiro, P. Vazquez, and P. Venturoli, The Chemistry of Preparation of V-P Mixed Oxides: Effect of The Preparation Parameters On The Catalytic Performance in n-Buntane and n-Pentane Selective Oxidation: Introduction. Literature Survey. Results and Discussion. G. Centi, M. Marella, L. Meregalli, S. Perathoner, M. Tomaselli, and T. La Torretta, Gel Supported Precipitation: An Advanced Method for The Synthesis of Pure and Mixed-Oxide Spheres for Catalytic Applications: Introduction.Brief Survey On The Industrial Preparation Methods of Oxide Carriers for Catalytic Applications. Gel Support Precipitation (GSP) Method. Properties of Oxides Prepared by The GSP Method. Experimental and Apparatus Section. Conclusions. References. T.R.Felthouse, D.A. Berkel, S.R. Jost, E.L. McGrew, and A. Vavere, Platinum-Catalyzed Sulfur Dioxide Oxidation Revisited: Assembly of Acid and Sintering Resistant Honeycomb Washcoat and Catalytically Active Phase Using Sols of Silica, Zirconia, and Platinum: Introduction. Literature Survey. Experimental Section. Results and Discussion. Honeycomb Composition. Conclusions. References. D.R. Milburn, B.D. Adkins, D.E. Sparks, R. Srinivasan, and B.H. Davis, Applications of Supercritical Drying inCatalyst Preparation: Introduction. Results. Conclusions. References. G. Strukul, M. Signoretto, F. Pinna, A. Benedetti, G. Cerrato, and C. Morterra, Aerogel Synthesis as an Improved Method for the Preparation of Platinum Promoted Zirconia-Sulfate Catalysts: Introduction. Scope and Applications. Synthesis. Analytical Properties. Structure. Nature of The Active Sites. Catalytic Activity. Conclusion. References. H. Binnemann and W. Broux, Surfactant Stabilized Nanosized Colloidal Metals and Alloys as Catalyst Precursors: Introduction. Survey and Key to the Literature. Results and Discussion. Nanometal Powders from Organosols. Colloidal Alloyed Metals. Catalytic Applications. Experimental. References. K.S. Suslick, T. Hyeon, M. Fang, and A.A. Cichowlas, Sonochemical Preparation of Nanostructured Catalysts: Introduction. Literature Survey. Results and Discussion. Experimental Details. Conclusions. References. G.W. Busser, J.G. Van Ommen, J.A. Lercher, Preparation and Characterization of Polymer Stabilized Rhodium Particles: Introduction. Experimental. Results. Discussion. Conclusions. References. J.Y. Ying, and A. Tschipe, Gas Phase Synthesis of Nonstoichiometric Nanocrystalline Catalysts: Introduction. Gas Phase Synthesis of Nanocrystalline Materials. Nonstoichiometric Nanocrystalline Oxides for Catalytic Oxidation. Summary. References. D.W. Matson, J.C. Linehan, J.G. Darab, M.F. Buehler, M.R. Phelps, G.G. Neuenschwander, A Flow-Through Hydrothermal Method for the Synthesis of Active Nanocrystalline Catalysts: Introduction. The RTDS Powder Synthesis Method and Apparatus. RTDS Products. Summary. References. W.R. Moser, J.E. Sunstrom IV, and B. Marshik-Guerts, The Synthesis of Nanostructure, Pure Phase Catalysts by Hydrodynamic Cavitation: Introduction. High Shear Hydrodynamic Cavitation Equipment. Catalyst Synthesis. Summary and Conclusions. References. M.C. Lovallo and Michael T. Sapatsis, Nanocrystalline Zeolites: Synthesis, Characterization, and Applications with Emphasis On Zeolite L Nanoclusters: Synthesis and Characterization of Zeolite Nanoparticles. Applications with Emphasis on Seed
J.C. Vartull, C.T. Kresge, W.J. Ruth, S.B. Mccullen, J.S. Beck, K.D. Schmitt, M.E. Leonowicz, J.D. Lutner, and E.W. Sheppard, Designed Synthesis of Mesoporous Molecular Sieve Systems Using Surfactant Directing Agents: Introduction. Experimental. Results and Discussion. J.B. Miller and E.I. Ko, The Role of Prehydolysis in the Preparation of Zirconia-Silica Aerogels: Introduction. Methods. Results and Discussion. F. Cavani, A. Colombo, F. Giuntoli,F. Trifiro, P. Vazquez, and P. Venturoli, The Chemistry of Preparation of V-P Mixed Oxides: Effect of The Preparation Parameters On The Catalytic Performance in n-Buntane and n-Pentane Selective Oxidation: Introduction. Literature Survey. Results and Discussion. G. Centi, M. Marella, L. Meregalli, S. Perathoner, M. Tomaselli, and T. La Torretta, Gel Supported Precipitation: An Advanced Method for The Synthesis of Pure and Mixed-Oxide Spheres for Catalytic Applications: Introduction.Brief Survey On The Industrial Preparation Methods of Oxide Carriers for Catalytic Applications. Gel Support Precipitation (GSP) Method. Properties of Oxides Prepared by The GSP Method. Experimental and Apparatus Section. Conclusions. References. T.R.Felthouse, D.A. Berkel, S.R. Jost, E.L. McGrew, and A. Vavere, Platinum-Catalyzed Sulfur Dioxide Oxidation Revisited: Assembly of Acid and Sintering Resistant Honeycomb Washcoat and Catalytically Active Phase Using Sols of Silica, Zirconia, and Platinum: Introduction. Literature Survey. Experimental Section. Results and Discussion. Honeycomb Composition. Conclusions. References. D.R. Milburn, B.D. Adkins, D.E. Sparks, R. Srinivasan, and B.H. Davis, Applications of Supercritical Drying inCatalyst Preparation: Introduction. Results. Conclusions. References. G. Strukul, M. Signoretto, F. Pinna, A. Benedetti, G. Cerrato, and C. Morterra, Aerogel Synthesis as an Improved Method for the Preparation of Platinum Promoted Zirconia-Sulfate Catalysts: Introduction. Scope and Applications. Synthesis. Analytical Properties. Structure. Nature of The Active Sites. Catalytic Activity. Conclusion. References. H. Binnemann and W. Broux, Surfactant Stabilized Nanosized Colloidal Metals and Alloys as Catalyst Precursors: Introduction. Survey and Key to the Literature. Results and Discussion. Nanometal Powders from Organosols. Colloidal Alloyed Metals. Catalytic Applications. Experimental. References. K.S. Suslick, T. Hyeon, M. Fang, and A.A. Cichowlas, Sonochemical Preparation of Nanostructured Catalysts: Introduction. Literature Survey. Results and Discussion. Experimental Details. Conclusions. References. G.W. Busser, J.G. Van Ommen, J.A. Lercher, Preparation and Characterization of Polymer Stabilized Rhodium Particles: Introduction. Experimental. Results. Discussion. Conclusions. References. J.Y. Ying, and A. Tschipe, Gas Phase Synthesis of Nonstoichiometric Nanocrystalline Catalysts: Introduction. Gas Phase Synthesis of Nanocrystalline Materials. Nonstoichiometric Nanocrystalline Oxides for Catalytic Oxidation. Summary. References. D.W. Matson, J.C. Linehan, J.G. Darab, M.F. Buehler, M.R. Phelps, G.G. Neuenschwander, A Flow-Through Hydrothermal Method for the Synthesis of Active Nanocrystalline Catalysts: Introduction. The RTDS Powder Synthesis Method and Apparatus. RTDS Products. Summary. References. W.R. Moser, J.E. Sunstrom IV, and B. Marshik-Guerts, The Synthesis of Nanostructure, Pure Phase Catalysts by Hydrodynamic Cavitation: Introduction. High Shear Hydrodynamic Cavitation Equipment. Catalyst Synthesis. Summary and Conclusions. References. M.C. Lovallo and Michael T. Sapatsis, Nanocrystalline Zeolites: Synthesis, Characterization, and Applications with Emphasis On Zeolite L Nanoclusters: Synthesis and Characterization of Zeolite Nanoparticles. Applications with Emphasis on Seed
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826