Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the refereed proceedings of the 19th International Conference on Advanced Data Mining and Applications, ADMA 2023, held in Shenyang, China, during August 21-23, 2023. The 216 full papers included in this book were carefully reviewed and selected from 503 submissions. They were organized in topical sections as follows: Data mining foundations, Grand challenges of data mining, Parallel and distributed data mining algorithms, Mining on data streams, Graph mining and Spatial data mining.
This book constitutes the refereed proceedings of the 19th International Conference on Advanced Data Mining and Applications, ADMA 2023, held in Shenyang, China, during August 21-23, 2023.
The 216 full papers included in this book were carefully reviewed and selected from 503 submissions. They were organized in topical sections as follows: Data mining foundations, Grand challenges of data mining, Parallel and distributed data mining algorithms, Mining on data streams, Graph mining and Spatial data mining.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Pharmaceutical Data Analysis.- Drug-target interaction prediction based on drug subgraph fingerprint extraction strategy and subgraph attention mechanism.- Soft Prompt Transfer for Zero-Shot and Few-Shot Learning in EHR Understanding.- Graph Convolution Synthetic Transformer for Chronic Kidney Disease Onset Prediction.- MTFL: Multi-task feature learning with joint correlation structure learning for Alzheimer's disease cognitive performance prediction.- Multi-Level Transformer for Cancer Outcome Prediction in Large-Scale Claims Data.- Individual Functional Network Abnormalities Mapping via Graph Representation-based Neural Architecture Search.- A novel application of a mutual information measure for analysing temporal changes in healthcare network graphs.- Drugs Resistance Analysis from Scarce Health Records via Multi-task Graph Representation.- Text Classification.- ParaNet:Parallel Networks with Pre-trained Models for Text Classification.- Open Text Classification Based on Dynamic Boundary Balance.- A Prompt Tuning Method for Chinese Medical Text Classification.- TabMentor: Detect Errors on Tabular Data with Noisy Labels.- Label-aware Hierarchical Contrastive Domain Adaptation for Cross-network Node Classification.- Semi-supervised classification based on Graph Convolution Encoder Representations from BERT.- Global Balanced Text Classification for Stable Disease Diagnosis.- Graph.- Dominance Maximization in Uncertain Graphs.- LAGCL: Towards Stable and Automated Graph Contrastive Learning.- Discriminative Graph-level Anomaly Detection via Dual-students-teacher Model.- Common-Truss-based Community Search on Multilayer Graphs.- Learning To Predict Shortest Path Distance.- Efficient Regular Path Query Evaluation with Structural Path Constraints.EnSpeciVAT: Enhanced SpeciVAT for Cluster Tendency Identification in Graphs.- Pessimistic Adversarially Regularized Learning for Graph Embedding.- M2HGCL: Multi-Scale Meta-Path Integrated Heterogeneous Graph Contrastive Learning.
Pharmaceutical Data Analysis.- Drug-target interaction prediction based on drug subgraph fingerprint extraction strategy and subgraph attention mechanism.- Soft Prompt Transfer for Zero-Shot and Few-Shot Learning in EHR Understanding.- Graph Convolution Synthetic Transformer for Chronic Kidney Disease Onset Prediction.- MTFL: Multi-task feature learning with joint correlation structure learning for Alzheimer's disease cognitive performance prediction.- Multi-Level Transformer for Cancer Outcome Prediction in Large-Scale Claims Data.- Individual Functional Network Abnormalities Mapping via Graph Representation-based Neural Architecture Search.- A novel application of a mutual information measure for analysing temporal changes in healthcare network graphs.- Drugs Resistance Analysis from Scarce Health Records via Multi-task Graph Representation.- Text Classification.- ParaNet:Parallel Networks with Pre-trained Models for Text Classification.- Open Text Classification Based on Dynamic Boundary Balance.- A Prompt Tuning Method for Chinese Medical Text Classification.- TabMentor: Detect Errors on Tabular Data with Noisy Labels.- Label-aware Hierarchical Contrastive Domain Adaptation for Cross-network Node Classification.- Semi-supervised classification based on Graph Convolution Encoder Representations from BERT.- Global Balanced Text Classification for Stable Disease Diagnosis.- Graph.- Dominance Maximization in Uncertain Graphs.- LAGCL: Towards Stable and Automated Graph Contrastive Learning.- Discriminative Graph-level Anomaly Detection via Dual-students-teacher Model.- Common-Truss-based Community Search on Multilayer Graphs.- Learning To Predict Shortest Path Distance.- Efficient Regular Path Query Evaluation with Structural Path Constraints.EnSpeciVAT: Enhanced SpeciVAT for Cluster Tendency Identification in Graphs.- Pessimistic Adversarially Regularized Learning for Graph Embedding.- M2HGCL: Multi-Scale Meta-Path Integrated Heterogeneous Graph Contrastive Learning.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826