Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This thesis explores advanced Bayesian statistical methods for extracting key information for cosmological model selection, parameter inference and forecasting from astrophysical observations. Bayesian model selection provides a measure of how good models in a set are relative to each other - but what if the best model is missing and not included in the set? Bayesian Doubt is an approach which addresses this problem and seeks to deliver an absolute rather than a relative measure of how good a model is. Supernovae type Ia were the first astrophysical observations to indicate the late time…mehr
This thesis explores advanced Bayesian statistical methods for extracting key information for cosmological model selection, parameter inference and forecasting from astrophysical observations. Bayesian model selection provides a measure of how good models in a set are relative to each other - but what if the best model is missing and not included in the set? Bayesian Doubt is an approach which addresses this problem and seeks to deliver an absolute rather than a relative measure of how good a model is. Supernovae type Ia were the first astrophysical observations to indicate the late time acceleration of the Universe - this work presents a detailed Bayesian Hierarchical Model to infer the cosmological parameters (in particular dark energy) from observations of these supernovae type Ia.
Marisa Cristina March is currently a Postdoctoral Research Fellow at the Univeristy of Sussex, and was formerly a postgraduate cosmology student at Imperial College working with Dr Roberto Trotta, in the field of dark energy science.
Inhaltsangabe
Introduction.- Cosmology background.- Dark energy and apparent late time acceleration.- Supernovae Ia.- Statistical techniques.- Bayesian Doubt: Should we doubt the Cosmological Constant?.- Bayesian parameter inference for SNeIa data.- Robustness to Systematic Error for Future Dark Energy Probes.- Summary and Conclusions.- Index.
Introduction.- Cosmology background.- Dark energy and apparent late time acceleration.- Supernovae Ia.- Statistical techniques.- Bayesian Doubt: Should we doubt the Cosmological Constant?.- Bayesian parameter inference for SNeIa data.- Robustness to Systematic Error for Future Dark Energy Probes.- Summary and Conclusions.- Index.
Introduction.- Cosmology background.- Dark energy and apparent late time acceleration.- Supernovae Ia.- Statistical techniques.- Bayesian Doubt: Should we doubt the Cosmological Constant?.- Bayesian parameter inference for SNeIa data.- Robustness to Systematic Error for Future Dark Energy Probes.- Summary and Conclusions.- Index.
Introduction.- Cosmology background.- Dark energy and apparent late time acceleration.- Supernovae Ia.- Statistical techniques.- Bayesian Doubt: Should we doubt the Cosmological Constant?.- Bayesian parameter inference for SNeIa data.- Robustness to Systematic Error for Future Dark Energy Probes.- Summary and Conclusions.- Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497