Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization (eBook, PDF)
The Ideal Risk, Uncertainty, and Performance Measures
Alle Infos zum eBook verschenken
Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization (eBook, PDF)
The Ideal Risk, Uncertainty, and Performance Measures
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This groundbreaking book extends traditional approaches of risk measurement and portfolio optimization by combining distributional models with risk or performance measures into one framework. Throughout these pages, the expert authors explain the fundamentals of probability metrics, outline new approaches to portfolio optimization, and discuss a variety of essential risk measures. Using numerous examples, they illustrate a range of applications to optimal portfolio choice and risk theory, as well as applications to the area of computational finance that may be useful to financial engineers.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 3.61MB
- Huu Tue HuynhStochastic Simulation and Applications in Finance with MATLAB Programs (eBook, PDF)71,99 €
- Carl R. BaconPractical Portfolio Performance Measurement and Attribution (eBook, PDF)73,99 €
- Steve L. AllenFinancial Risk Management (eBook, PDF)84,99 €
- Frank J. FabozziMortgage-Backed Securities (eBook, PDF)63,99 €
- John D. FinnertyProject Financing (eBook, PDF)74,99 €
- New York University Stern School of BusinessRegulating Wall Street (eBook, PDF)35,99 €
- Callum HendersonCurrency Strategy (eBook, PDF)74,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 400
- Erscheinungstermin: 19. Februar 2008
- Englisch
- ISBN-13: 9780470253601
- Artikelnr.: 37291572
- Verlag: John Wiley & Sons
- Seitenzahl: 400
- Erscheinungstermin: 19. Februar 2008
- Englisch
- ISBN-13: 9780470253601
- Artikelnr.: 37291572
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Acknowledgments
- About the Authors
CHAPTER 1: Concepts of Probability
1.1 Introduction
1.2 Basic Concepts
1.3 Discrete Probability Distributions
1.4 Continuous Probability Distributions
1.5 Statistical Moments and Quantiles
1.6 Joint Probability Distributions
1.7 Probabilistic Inequalities
1.8 Summary
CHAPTER 2: Optimization
2.1 Introduction
2.2 Unconstrained Optimization
2.3 Constrained Optimization
2.4 Summary
CHAPTER 3: Probability Metrics
3.1 Introduction
3.2 Measuring Distances: The Discrete Case
3.3 Primary, Simple, and Compound Metrics
3.4 Summary
3.5 Technical Appendix
CHAPTER 4: Ideal Probability Metrics
4.1 Introduction
4.2 The Classical Central Limit Theorem
4.3 The Generalized Central Limit Theorem
4.4 Construction of Ideal Probability Metrics
4.5 Summary
4.6 Technical Appendix
CHAPTER 5: Choice under Uncertainty
5.1 Introduction
5.2 Expected Utility Theory
5.3 Stochastic Dominance
5.4 Probability Metrics and Stochastic Dominance
5.5 Summary
5.6 Technical Appendix
CHAPTER 6: Risk and Uncertainty
6.1 Introduction
6.2 Measures of Dispersion
6.3 Probability Metrics and Dispersion Measures
6.4 Measures of Risk
6.5 Risk Measures and Dispersion Measures
6.6 Risk Measures and Stochastic Orders
6.7 Summary
6.8 Technical Appendix
CHAPTER 7: Average Value-at-Risk
7.1 Introduction
7.2 Average Value-at-Risk
7.3 AVaR Estimation from a Sample
7.4 Computing Portfolio AVaR in Practice
7.5 Backtesting of AVaR
7.6 Spectral Risk Measures
7.7 Risk Measures and Probability Metrics
7.8 Summary
7.9 Technical Appendix
CHAPTER 8: Optimal Portfolios
8.1 Introduction
8.2 Mean-Variance Analysis
8.3 Mean-Risk Analysis
8.4 Summary
8.5 Technical Appendix
CHAPTER 9: Benchmark Tracking Problems
9.1 Introduction
9.2 The Tracking Error Problem
9.3 Relation to Probability Metrics
9.4 Examples of r.d. Metrics
9.5 Numerical Example
9.6 Summary
9.7 Technical Appendix
CHAPTER 10: Performance Measures
10.1 Introduction
10.2 Reward-to-Risk Ratios
10.3 Reward-to-Variability Ratios
10.4 Summary
10.5 Technical Appendix
- Index
- Acknowledgments
- About the Authors
CHAPTER 1: Concepts of Probability
1.1 Introduction
1.2 Basic Concepts
1.3 Discrete Probability Distributions
1.4 Continuous Probability Distributions
1.5 Statistical Moments and Quantiles
1.6 Joint Probability Distributions
1.7 Probabilistic Inequalities
1.8 Summary
CHAPTER 2: Optimization
2.1 Introduction
2.2 Unconstrained Optimization
2.3 Constrained Optimization
2.4 Summary
CHAPTER 3: Probability Metrics
3.1 Introduction
3.2 Measuring Distances: The Discrete Case
3.3 Primary, Simple, and Compound Metrics
3.4 Summary
3.5 Technical Appendix
CHAPTER 4: Ideal Probability Metrics
4.1 Introduction
4.2 The Classical Central Limit Theorem
4.3 The Generalized Central Limit Theorem
4.4 Construction of Ideal Probability Metrics
4.5 Summary
4.6 Technical Appendix
CHAPTER 5: Choice under Uncertainty
5.1 Introduction
5.2 Expected Utility Theory
5.3 Stochastic Dominance
5.4 Probability Metrics and Stochastic Dominance
5.5 Summary
5.6 Technical Appendix
CHAPTER 6: Risk and Uncertainty
6.1 Introduction
6.2 Measures of Dispersion
6.3 Probability Metrics and Dispersion Measures
6.4 Measures of Risk
6.5 Risk Measures and Dispersion Measures
6.6 Risk Measures and Stochastic Orders
6.7 Summary
6.8 Technical Appendix
CHAPTER 7: Average Value-at-Risk
7.1 Introduction
7.2 Average Value-at-Risk
7.3 AVaR Estimation from a Sample
7.4 Computing Portfolio AVaR in Practice
7.5 Backtesting of AVaR
7.6 Spectral Risk Measures
7.7 Risk Measures and Probability Metrics
7.8 Summary
7.9 Technical Appendix
CHAPTER 8: Optimal Portfolios
8.1 Introduction
8.2 Mean-Variance Analysis
8.3 Mean-Risk Analysis
8.4 Summary
8.5 Technical Appendix
CHAPTER 9: Benchmark Tracking Problems
9.1 Introduction
9.2 The Tracking Error Problem
9.3 Relation to Probability Metrics
9.4 Examples of r.d. Metrics
9.5 Numerical Example
9.6 Summary
9.7 Technical Appendix
CHAPTER 10: Performance Measures
10.1 Introduction
10.2 Reward-to-Risk Ratios
10.3 Reward-to-Variability Ratios
10.4 Summary
10.5 Technical Appendix
- Index