Advanced Surfaces for Stem Cell Research (eBook, PDF)
Redaktion: Tiwari; Uzun, Lokman; Garipcan, Bora
Alle Infos zum eBook verschenken
Advanced Surfaces for Stem Cell Research (eBook, PDF)
Redaktion: Tiwari; Uzun, Lokman; Garipcan, Bora
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book outlines first the importance of Extra Cellular Matrix (ECM), which is a natural surface for most of cells. In the following chapters the influence of biological, chemical, mechanical, and physical properties of surfaces in micro and nano-scale on stem cell behavior are discussed including the mechanotransduction. Biomimetic and bioinspired approaches are highlighted for developing microenvironment of several tissues, and surface engineering applications are discussed in tissue engineering, regenerative medicine and different type of biomaterials in various chapters of the book. This…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 5.55MB
- Uma LakshmipathyEmerging Technology Platforms for Stem Cells (eBook, PDF)141,99 €
- Stem Cells in Birth Defects Research and Developmental Toxicology (eBook, PDF)156,99 €
- Stem Cells in Toxicology and Medicine (eBook, PDF)162,99 €
- Bioadhesives in Drug Delivery (eBook, PDF)190,99 €
- Nanocarrier Vaccines (eBook, PDF)173,99 €
- Advanced Carbon Materials and Technology (eBook, PDF)188,99 €
- Advanced Energy Materials (eBook, PDF)181,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 480
- Erscheinungstermin: 29. November 2016
- Englisch
- ISBN-13: 9781119242833
- Artikelnr.: 47381560
- Verlag: John Wiley & Sons
- Seitenzahl: 480
- Erscheinungstermin: 29. November 2016
- Englisch
- ISBN-13: 9781119242833
- Artikelnr.: 47381560
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Kaan Akkan 7.1 Introduction 166 7.2 Fundamental Laser Optics for Surface Structuring 166 7.2.1 Definitive Facts for Laser Surface Structuring 167 7.2.1.1 Absorptivity and Reflectivity of the Laser Beam by the Material Surface 167 7.2.1.2 Effect of the Incoming Laser Light Polarization 168 7.2.1.3 Operation Mode of the Laser 169 7.2.1.4 Beam Quality Factor 170 7.2.1.5 Laser Pulse Energy/Power 171 7.2.2 Ablation by Laser Pulses 172 7.2.2.1 Focusing the Laser Beam 172 7.2.2.2 Ablation Regime 173 7.3 Methods for Laser Surface Structuring 174 7.3.1 Physical Surface Modifications by Lasers 174 7.3.1.1 Direct Structuring 175 7.3.1.2 Beam Shaping Optics 177 7.3.1.3 Direct Laser Interference Patterning 180 7.3.2 Chemical Surface Modification by Lasers 181 7.3.2.1 Pulsed Laser Deposition 181 7.3.2.2 Laser Surface Alloying 184 7.3.2.3 Laser Surface Oxidation and Nitriding 186 7.4 Stem Cells and Laser-Modified Surfaces 187 7.5 Conclusions 191 References 192 8 Plasma Polymer Deposition: A Versatile Tool for Stem Cell Research 197 M. N. Macgregor-Ramiasa and K. Vasilev 8.1 Introduction 197 8.2 The Principle and Physics of Plasma Methods for Surface Modification 199 8.2.1 Plasma Sputtering, Etching an Implantation 200 8.2.2 Plasma Polymer Deposition 201 8.3 Surface Properties Influencing Stem Cell Fate 202 8.3.1 Plasma Methods for Tailored Surface Chemistry 203 8.3.1.1 Oxygen-rich Surfaces 204 8.3.1.2 Nitrogen-rich Surfaces 208 8.3.1.3 Systematic Studies and Copolymers 210 8.3.2 Plasma for Surface Topography 211 8.3.3 Plasma for Surface Stiffness 213 8.3.4 Plasma for Gradient Substrata 215 8.3.5 Plasma and 3D Scaffolds 218 8.4 New Trends and Outlook 219 8.5 Conclusions 219 References 220 9 Three-dimensional Printing Approaches for the Treatment of Critical-sized Bone Defects 231 Sara Salehi, Bilal A. Naved and Warren L. Grayson 9.1 Background 232 9.1.1 Treatment Approaches for Critical-sized Bone Defects 232 9.1.2 History of the Application of 3D Printing to Medicine and Biology 233 9.2 Overview of 3D Printing Technologies 234 9.2.1 Laser-based Technologies 235 9.2.1.1 Stereolithography 235 9.2.1.2 Selective Laser Sintering 236 9.2.1.3 Selective Laser Melting 236 9.2.1.4 Electron Beam Melting 237 9.2.1.5 Two-photon Polymerization 237 9.2.2 Extrusion-based Technologies 238 9.2.2.1 Fused Deposition Modeling 238 9.2.2.2 Material Jetting 238 9.2.3 Ink-based Technologies 239 9.2.3.1 Inkjet 3D Printing 239 9.2.3.2 Aerosol Jet Printing 239 9.3 Surgical Guides and Models for Bone Reconstruction 240 9.3.1 Laser-based Surgical Guides 240 9.3.2 Extrusion-based Surgical Guides 240 9.3.3 Ink-based Surgical Guides 241 9.4 Three-dimensionally Printed Implants for Bone Substitution 242 9.4.1 Laser-based Technologies for Metallic Bone Implants 244 9.4.2 Extrusion-based Technologies for Bone Implants 245 9.4.3 Ink-based Technologies for Bone Implants 246 9.5 Scaffolds for Bone Regeneration 246 9.5.1 Laser-based Printing for Regenerative Scaffolds 247 9.5.2 Extrusion-based Printing for Regenerative Scaffolds 247 9.5.3 Ink-based Printing for Regenerative Scaffolds 249 9.5.4 Pre- and Postprocessing Techniques 250 9.5.4.1 Preprocessing 250 9.5.4.2 Postprocessing: Sintering 256 9.5.4.3 Postprocessing: Functionalization 256 9.6 Bioprinting 257 9.7 Conclusion 262 List of Abbreviation 263 References 264 10 Application of Bioreactor Concept and Modeling Techniques to Bone Regeneration and Augmentation Treatments 277 Oscar A. Deccó and Jésica I. Zuchuat 10.1 Bone Tissue Regeneration 278 10.1.1 Proinflammatory Cytokines 279 10.1.2 Transforming Growth Factor Beta 279 10.1.3 Angiogenesis in Regeneration 280 10.2 Actual Therapeutic Strategies and Concepts to Obtain an Optimal Bone Quality and Quantity 281 10.2.1 Guided Bone Regeneration Based on Cells 282 10.2.1.1 Embryonic Stem Cells 282 10.2.1.2 Adult Stem Cells 282 10.2.1.3 Mesenchymal Stem Cells 283 10.2.2 Guided Bone Regeneration Based on PRP and Growth Factors 284 10.2.2.1 Bone Morphogenetic Proteins 287 10.2.3 Guided Bone Regeneration Based on Barrier Membranes 288 10.2.4 Guided Bone Regeneration Based on Scaffolds 290 10.3 Bioreactors Employed for Tissue Engineering in Guided Bone Regeneration 291 10.4 Bioreactor Concept in Guided Bone Regeneration and Tissue Engineering: In Vivo Application 294 10.5 New Multidisciplinary Approaches Intended to Improve and Accelerate the Treatment of Injured and/or Diseased Bone 303 10.5.1 Application of Bioreactor in Dentistry: Therapies for the Treatment of Maxillary Bone Defects 304 10.5.2 Application of Bioreactor in Cases of Osteoporosis 307 10.6 Computational Modeling: An Effective Tool to Predict Bone Ingrowth 310 References 311 11 Stem Cell-based Medicinal Products: Regulatory Perspectives 321 DenizOzdil and Halil Murat Aydin 11.1 Introduction 321 11.2 Defining Stem Cell-based Medicinal Products 323 11.3 Regional Regulatory Issues for Stem Cell Products 326 11.4 Regulatory Systems for Stem Cell-based Technologies 327 11.4.1 The US Regulatory System 328 11.5 Stem Cell Technologies: The European Regulatory System 336 References 340 12 Substrates and Surfaces for Control of Pluripotent Stem Cell Fate and Function 341 Akshaya Srinivasan, Yi-Chin Toh, Xian Jun Loh and Wei Seong Toh 12.1 Introduction 342 12.2 Pluripotent Stem Cells 342 12.3 Substrates for Maintenance of Self-renewal and Pluripotency of PSCs 344 12.3.1 Cellular Substrates 344 12.3.2 Acellular Substrates 345 12.3.2.1 Biological Matrices 345 12.3.2.2 ECM Components 348 12.3.2.3 Decellularized Matrices 350 12.3.2.4 Cell Adhesion Molecules 351 12.3.2.5 Synthetic Substrates 352 12.4 Substrates for Promoting Differentiation of PSCs 355 12.4.1 Cellular Substrates 355 12.4.2 Acellular Substrates 356 12.4.2.1 Biological Matrices 356 12.4.2.2 ECM Components 358 12.4.2.3 Decellularized Matrices 362 12.4.2.4 Cell Adhesion Molecules 363 12.4.2.5 Synthetic Substrates 363 12.5 Conclusions 366 Acknowledgments 367 References 367 13 Silk as a Natural Biopolymer for Tissue Engineering 379 Ay
e Ak Can and Gamze Bölükbäi Ate
13.1 Introduction 380 13.2 SF as a Biomaterial 383 13.2.1 Fibroin Hydrogels and Sponges 384 13.2.2 Fibroin Films and Membranes 386 13.2.3 Nonwoven and Woven Silk Scaffolds 386 13.2.4 Silk Fibroin as a Bioactive Molecule Delivery 386 13.3 Biomedical Applications of Silk-based Biomaterials 387 13.3.1 Bone Tissue Engineering 387 13.3.2 Cartilage Tissue Engineering 389 13.3.3 Ligament and Tendon Tissue Engineering 391 13.3.4 Cardiovascular Tissue Engineering 391 13.3.5 Skin Tissue Engineering 393 13.3.6 Other Applications of Silk Fibroin 393 13.4 Conclusion and Future Directions 393 References 394 14 Applications of Biopolymer-based, Surface-modified Devices in Transplant Medicine and Tissue Engineering 399 Ashim Malhotra, Gulnaz Javan and Shivani Soni 14.1 Introduction to Cardiovascular Disease 400 14.2 Need Assessment for Biopolymer-based Devices in Cardiovascular Therapeutics 400 14.3 Emergence of Surface Modification Applications in Cardiovascular Sciences: A Historical Perspective 401 14.4 Nitric Oxide Producing Biosurface Modification 403 14.5 Surface Modification by Extracellular Matrix Protein Adherence 404 14.6 The Role of Surface Modification in the Construction of Cardiac Prostheses 405 14.7 Biopolymer-based Surface Modification of Materials Used in Bone Reconstruction 406 14.8 The Use of Biopolymers in Nanotechnology 409 14.8.1 Protein Nanoparticles 410 14.8.1.1 Albumin-based Nanoparticles and Surface Modification 411 14.8.1.2 Collagen-based Nanoparticles and Surface Modification 412 14.8.1.3 Gelatin-based Nanoparticle Systems 413 14.8.2 Polysaccharide-based Nanoparticle Systems 413 14.8.2.1 The Use of Alginate for Surface Modifications 413 14.8.2.2 The Use of Chitosan-based Nanoparticles and Chitosan-based Surface Modification 414 14.8.2.3 The Use of Chitin-based Nanoparticles and Chitin-based Surface Modification 416 14.8.2.4 The Use of Cellulose-based Nanoparticles and Cellulose-based Surface Modification 417 References 418 15 Stem Cell Behavior on Microenvironment Mimicked Surfaces 423 M. Özgen Öztürk Öncel and Bora Garipcan 15.1 Introduction 424 15.2 Stem Cells 425 15.2.1 Definition and Types 425 15.2.1.1 Embryonic Stem Cells 426 15.2.1.2 Adult Stem Cells 426 15.2.1.3 Reprogramming and Induced Pluripotent Stem Cells 427 15.2.2 Stem Cell Niche 427 15.3 Stem Cells: Microenvironment Interactions 428 15.3.1 Extracellular Matrix 429 15.3.2 Signaling Factors 429 15.3.3 Physicochemical Composition 430 15.3.4 Mechanical Properties 430 15.3.5 Cell-Cell Interactions 431 15.4 Biomaterials as Stem Cell Microenvironments 431 15.4.1 Surface Chemistry 431 15.4.2 Surface Hydrophilicity and Hydrophobicity 434 15.4.3 Substrate Stiffness 435 15.4.4 Surface Topography 435 15.5 Biomimicked and Bioinspired Approaches 436 15.5.1 Bone Tissue Regeneration 439 15.5.2 Cartilage Tissue Regeneration 440 15.5.3 Cardiac Tissue Regeneration 441 15.6 Conclusion 442 References 442
Kaan Akkan 7.1 Introduction 166 7.2 Fundamental Laser Optics for Surface Structuring 166 7.2.1 Definitive Facts for Laser Surface Structuring 167 7.2.1.1 Absorptivity and Reflectivity of the Laser Beam by the Material Surface 167 7.2.1.2 Effect of the Incoming Laser Light Polarization 168 7.2.1.3 Operation Mode of the Laser 169 7.2.1.4 Beam Quality Factor 170 7.2.1.5 Laser Pulse Energy/Power 171 7.2.2 Ablation by Laser Pulses 172 7.2.2.1 Focusing the Laser Beam 172 7.2.2.2 Ablation Regime 173 7.3 Methods for Laser Surface Structuring 174 7.3.1 Physical Surface Modifications by Lasers 174 7.3.1.1 Direct Structuring 175 7.3.1.2 Beam Shaping Optics 177 7.3.1.3 Direct Laser Interference Patterning 180 7.3.2 Chemical Surface Modification by Lasers 181 7.3.2.1 Pulsed Laser Deposition 181 7.3.2.2 Laser Surface Alloying 184 7.3.2.3 Laser Surface Oxidation and Nitriding 186 7.4 Stem Cells and Laser-Modified Surfaces 187 7.5 Conclusions 191 References 192 8 Plasma Polymer Deposition: A Versatile Tool for Stem Cell Research 197 M. N. Macgregor-Ramiasa and K. Vasilev 8.1 Introduction 197 8.2 The Principle and Physics of Plasma Methods for Surface Modification 199 8.2.1 Plasma Sputtering, Etching an Implantation 200 8.2.2 Plasma Polymer Deposition 201 8.3 Surface Properties Influencing Stem Cell Fate 202 8.3.1 Plasma Methods for Tailored Surface Chemistry 203 8.3.1.1 Oxygen-rich Surfaces 204 8.3.1.2 Nitrogen-rich Surfaces 208 8.3.1.3 Systematic Studies and Copolymers 210 8.3.2 Plasma for Surface Topography 211 8.3.3 Plasma for Surface Stiffness 213 8.3.4 Plasma for Gradient Substrata 215 8.3.5 Plasma and 3D Scaffolds 218 8.4 New Trends and Outlook 219 8.5 Conclusions 219 References 220 9 Three-dimensional Printing Approaches for the Treatment of Critical-sized Bone Defects 231 Sara Salehi, Bilal A. Naved and Warren L. Grayson 9.1 Background 232 9.1.1 Treatment Approaches for Critical-sized Bone Defects 232 9.1.2 History of the Application of 3D Printing to Medicine and Biology 233 9.2 Overview of 3D Printing Technologies 234 9.2.1 Laser-based Technologies 235 9.2.1.1 Stereolithography 235 9.2.1.2 Selective Laser Sintering 236 9.2.1.3 Selective Laser Melting 236 9.2.1.4 Electron Beam Melting 237 9.2.1.5 Two-photon Polymerization 237 9.2.2 Extrusion-based Technologies 238 9.2.2.1 Fused Deposition Modeling 238 9.2.2.2 Material Jetting 238 9.2.3 Ink-based Technologies 239 9.2.3.1 Inkjet 3D Printing 239 9.2.3.2 Aerosol Jet Printing 239 9.3 Surgical Guides and Models for Bone Reconstruction 240 9.3.1 Laser-based Surgical Guides 240 9.3.2 Extrusion-based Surgical Guides 240 9.3.3 Ink-based Surgical Guides 241 9.4 Three-dimensionally Printed Implants for Bone Substitution 242 9.4.1 Laser-based Technologies for Metallic Bone Implants 244 9.4.2 Extrusion-based Technologies for Bone Implants 245 9.4.3 Ink-based Technologies for Bone Implants 246 9.5 Scaffolds for Bone Regeneration 246 9.5.1 Laser-based Printing for Regenerative Scaffolds 247 9.5.2 Extrusion-based Printing for Regenerative Scaffolds 247 9.5.3 Ink-based Printing for Regenerative Scaffolds 249 9.5.4 Pre- and Postprocessing Techniques 250 9.5.4.1 Preprocessing 250 9.5.4.2 Postprocessing: Sintering 256 9.5.4.3 Postprocessing: Functionalization 256 9.6 Bioprinting 257 9.7 Conclusion 262 List of Abbreviation 263 References 264 10 Application of Bioreactor Concept and Modeling Techniques to Bone Regeneration and Augmentation Treatments 277 Oscar A. Deccó and Jésica I. Zuchuat 10.1 Bone Tissue Regeneration 278 10.1.1 Proinflammatory Cytokines 279 10.1.2 Transforming Growth Factor Beta 279 10.1.3 Angiogenesis in Regeneration 280 10.2 Actual Therapeutic Strategies and Concepts to Obtain an Optimal Bone Quality and Quantity 281 10.2.1 Guided Bone Regeneration Based on Cells 282 10.2.1.1 Embryonic Stem Cells 282 10.2.1.2 Adult Stem Cells 282 10.2.1.3 Mesenchymal Stem Cells 283 10.2.2 Guided Bone Regeneration Based on PRP and Growth Factors 284 10.2.2.1 Bone Morphogenetic Proteins 287 10.2.3 Guided Bone Regeneration Based on Barrier Membranes 288 10.2.4 Guided Bone Regeneration Based on Scaffolds 290 10.3 Bioreactors Employed for Tissue Engineering in Guided Bone Regeneration 291 10.4 Bioreactor Concept in Guided Bone Regeneration and Tissue Engineering: In Vivo Application 294 10.5 New Multidisciplinary Approaches Intended to Improve and Accelerate the Treatment of Injured and/or Diseased Bone 303 10.5.1 Application of Bioreactor in Dentistry: Therapies for the Treatment of Maxillary Bone Defects 304 10.5.2 Application of Bioreactor in Cases of Osteoporosis 307 10.6 Computational Modeling: An Effective Tool to Predict Bone Ingrowth 310 References 311 11 Stem Cell-based Medicinal Products: Regulatory Perspectives 321 DenizOzdil and Halil Murat Aydin 11.1 Introduction 321 11.2 Defining Stem Cell-based Medicinal Products 323 11.3 Regional Regulatory Issues for Stem Cell Products 326 11.4 Regulatory Systems for Stem Cell-based Technologies 327 11.4.1 The US Regulatory System 328 11.5 Stem Cell Technologies: The European Regulatory System 336 References 340 12 Substrates and Surfaces for Control of Pluripotent Stem Cell Fate and Function 341 Akshaya Srinivasan, Yi-Chin Toh, Xian Jun Loh and Wei Seong Toh 12.1 Introduction 342 12.2 Pluripotent Stem Cells 342 12.3 Substrates for Maintenance of Self-renewal and Pluripotency of PSCs 344 12.3.1 Cellular Substrates 344 12.3.2 Acellular Substrates 345 12.3.2.1 Biological Matrices 345 12.3.2.2 ECM Components 348 12.3.2.3 Decellularized Matrices 350 12.3.2.4 Cell Adhesion Molecules 351 12.3.2.5 Synthetic Substrates 352 12.4 Substrates for Promoting Differentiation of PSCs 355 12.4.1 Cellular Substrates 355 12.4.2 Acellular Substrates 356 12.4.2.1 Biological Matrices 356 12.4.2.2 ECM Components 358 12.4.2.3 Decellularized Matrices 362 12.4.2.4 Cell Adhesion Molecules 363 12.4.2.5 Synthetic Substrates 363 12.5 Conclusions 366 Acknowledgments 367 References 367 13 Silk as a Natural Biopolymer for Tissue Engineering 379 Ay
e Ak Can and Gamze Bölükbäi Ate
13.1 Introduction 380 13.2 SF as a Biomaterial 383 13.2.1 Fibroin Hydrogels and Sponges 384 13.2.2 Fibroin Films and Membranes 386 13.2.3 Nonwoven and Woven Silk Scaffolds 386 13.2.4 Silk Fibroin as a Bioactive Molecule Delivery 386 13.3 Biomedical Applications of Silk-based Biomaterials 387 13.3.1 Bone Tissue Engineering 387 13.3.2 Cartilage Tissue Engineering 389 13.3.3 Ligament and Tendon Tissue Engineering 391 13.3.4 Cardiovascular Tissue Engineering 391 13.3.5 Skin Tissue Engineering 393 13.3.6 Other Applications of Silk Fibroin 393 13.4 Conclusion and Future Directions 393 References 394 14 Applications of Biopolymer-based, Surface-modified Devices in Transplant Medicine and Tissue Engineering 399 Ashim Malhotra, Gulnaz Javan and Shivani Soni 14.1 Introduction to Cardiovascular Disease 400 14.2 Need Assessment for Biopolymer-based Devices in Cardiovascular Therapeutics 400 14.3 Emergence of Surface Modification Applications in Cardiovascular Sciences: A Historical Perspective 401 14.4 Nitric Oxide Producing Biosurface Modification 403 14.5 Surface Modification by Extracellular Matrix Protein Adherence 404 14.6 The Role of Surface Modification in the Construction of Cardiac Prostheses 405 14.7 Biopolymer-based Surface Modification of Materials Used in Bone Reconstruction 406 14.8 The Use of Biopolymers in Nanotechnology 409 14.8.1 Protein Nanoparticles 410 14.8.1.1 Albumin-based Nanoparticles and Surface Modification 411 14.8.1.2 Collagen-based Nanoparticles and Surface Modification 412 14.8.1.3 Gelatin-based Nanoparticle Systems 413 14.8.2 Polysaccharide-based Nanoparticle Systems 413 14.8.2.1 The Use of Alginate for Surface Modifications 413 14.8.2.2 The Use of Chitosan-based Nanoparticles and Chitosan-based Surface Modification 414 14.8.2.3 The Use of Chitin-based Nanoparticles and Chitin-based Surface Modification 416 14.8.2.4 The Use of Cellulose-based Nanoparticles and Cellulose-based Surface Modification 417 References 418 15 Stem Cell Behavior on Microenvironment Mimicked Surfaces 423 M. Özgen Öztürk Öncel and Bora Garipcan 15.1 Introduction 424 15.2 Stem Cells 425 15.2.1 Definition and Types 425 15.2.1.1 Embryonic Stem Cells 426 15.2.1.2 Adult Stem Cells 426 15.2.1.3 Reprogramming and Induced Pluripotent Stem Cells 427 15.2.2 Stem Cell Niche 427 15.3 Stem Cells: Microenvironment Interactions 428 15.3.1 Extracellular Matrix 429 15.3.2 Signaling Factors 429 15.3.3 Physicochemical Composition 430 15.3.4 Mechanical Properties 430 15.3.5 Cell-Cell Interactions 431 15.4 Biomaterials as Stem Cell Microenvironments 431 15.4.1 Surface Chemistry 431 15.4.2 Surface Hydrophilicity and Hydrophobicity 434 15.4.3 Substrate Stiffness 435 15.4.4 Surface Topography 435 15.5 Biomimicked and Bioinspired Approaches 436 15.5.1 Bone Tissue Regeneration 439 15.5.2 Cartilage Tissue Regeneration 440 15.5.3 Cardiac Tissue Regeneration 441 15.6 Conclusion 442 References 442