114,95 €
114,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
57 °P sammeln
114,95 €
114,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
57 °P sammeln
Als Download kaufen
114,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
57 °P sammeln
Jetzt verschenken
114,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
57 °P sammeln
  • Format: ePub

Advanced Theory of Constraint and Motion Analysis for Robot Mechanisms provides a complete analytical approach to the invention of new robot mechanisms and the analysis of existing designs based on a unified mathematical description of the kinematic and geometric constraints of mechanisms.
Beginning with a high level introduction to mechanisms and components, the book moves on to present a new analytical theory of terminal constraints for use in the development of new spatial mechanisms and structures. It clearly describes the application of screw theory to kinematic problems and provides
…mehr

Produktbeschreibung
Advanced Theory of Constraint and Motion Analysis for Robot Mechanisms provides a complete analytical approach to the invention of new robot mechanisms and the analysis of existing designs based on a unified mathematical description of the kinematic and geometric constraints of mechanisms.

Beginning with a high level introduction to mechanisms and components, the book moves on to present a new analytical theory of terminal constraints for use in the development of new spatial mechanisms and structures. It clearly describes the application of screw theory to kinematic problems and provides tools that students, engineers and researchers can use for investigation of critical factors such as workspace, dexterity and singularity.

  • Combines constraint and free motion analysis and design, offering a new approach to robot mechanism innovation and improvement
  • Clearly describes the use of screw theory in robot kinematic analysis, allowing for concise representation of motion and static forces when compared to conventional analysis methods
  • Includes worked examples to translate theory into practice and demonstrate the application of new analytical methods to critical robotics problems

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Jingshan Zhao is a leading machine design, mechanical systems and robotics researcher at China's prestigious Tsinghua University. He has received numerous awards for doctoral excellence in China over the past decade, including the New Century Excellent Talents in University Award in 2009 from the Education Ministry of China. He has contributed to more than 40 articles in international journals, is an editorial board member of the Journal of Machinery and Automation, and is the regional editor for Asia of The Open Mechanical Engineering Journal.