Advances in Deep Learning for Medical Image Analysis (eBook, PDF)
Redaktion: Mire, Archana; Patil, Shailaja; Elangovan, Vinayak
47,95 €
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
47,95 €
Als Download kaufen
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Advances in Deep Learning for Medical Image Analysis (eBook, PDF)
Redaktion: Mire, Archana; Patil, Shailaja; Elangovan, Vinayak
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This reference text covers deep learning methods for detection of various diseases and analysis of medical images for better understanding. It will serve as a useful text for graduate students and academic researchers in the fields of electronics engineering, computer science, biomedical engineering, and electrical engineering.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 10.79MB
Andere Kunden interessierten sich auch für
- K. ShankarArtificial Intelligence for the Internet of Health Things (eBook, PDF)51,95 €
- Object Detection with Deep Learning Models (eBook, PDF)46,95 €
- Ram Bilas PachoriTime-Frequency Analysis Techniques and their Applications (eBook, PDF)47,95 €
- DeepFakes (eBook, PDF)48,95 €
- Brain and Behavior Computing (eBook, PDF)62,95 €
- Maheshkumar H KolekarIntelligent Video Surveillance Systems (eBook, PDF)51,95 €
- Advanced Sensing in Image Processing and IoT (eBook, PDF)47,95 €
-
-
-
This reference text covers deep learning methods for detection of various diseases and analysis of medical images for better understanding. It will serve as a useful text for graduate students and academic researchers in the fields of electronics engineering, computer science, biomedical engineering, and electrical engineering.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 168
- Erscheinungstermin: 26. April 2022
- Englisch
- ISBN-13: 9781000575958
- Artikelnr.: 63602549
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 168
- Erscheinungstermin: 26. April 2022
- Englisch
- ISBN-13: 9781000575958
- Artikelnr.: 63602549
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Archana Mire is presently working as Head, Department of computer engineering, Terna Engineering College, Navi Mumbai, India. She has more than 14 years of research and teaching experience. She has published research papers in various SCI/Scopus indexed national/international conferences and journals. She has worked on various national/International conference technical committees and reviewed papers for various conferences and journals. She has served as a session chair for various international conferences organized within and outside India. Her main research area is machine learning and image processing. Vinayak Elangovan is currently working as an assistant professor of Computer Science at Penn State University in Abington, USA. He earned his Ph.D. in Computer Information Systems Engineering at Tennessee State University, the USA in 2014, and continued his research and teaching there as a Postdoctoral fellow. He worked at The College of New Jersey (TCNJ) and St. Olaf College teaching various computer science courses for undergraduate students during 2015-2017. His research interest includes computer vision, machine vision, multi-sensor data fusion, and activity sequence analysis with a keen interest in software applications development and database management. He has worked on a number of funded projects related to the Department of Defense and the Department of Homeland Security applications. He also has considerable work experience in the engineering and software industries. Shailaja Patil is currently working as a professor, department of electronics and telecommunication, and Dean (Research and Development), Rajarshi Shahu College of Engineering, Pune, India. She has 25 years of teaching and 3 years of research experience. She has more than 60 publications in peer-reviewed journals. She has delivered expert lectures on WSN, SDN, and Intellectual property Rights at various workshops. She is a Fellow of the Institution of Engineers and members of various professional bodies- IEEE, ISTE, GISFI, ISA, ACM, etc.
1. Introduction. 2. Machine Learning for Signal Analysis. 3. Deep Learning
for Cancer Detection. 4. Deep Learning for Diabetic Cases. 5. Deep Learning
for Blood Sample Images. 6. Deep Learning for Skin Image Analysis. 7. Deep
Learning for Alzheimer's Diseases Detection. 8. Deep Leaning for Coronary
Disease Detection. 9. Deep Learning for Medical Image Forensic. 10. Deep
Learning for Fetal Anomaly Detection. 11. Digital Detectors in Medicine.
12. Deep Learning for Plant Phytology.
for Cancer Detection. 4. Deep Learning for Diabetic Cases. 5. Deep Learning
for Blood Sample Images. 6. Deep Learning for Skin Image Analysis. 7. Deep
Learning for Alzheimer's Diseases Detection. 8. Deep Leaning for Coronary
Disease Detection. 9. Deep Learning for Medical Image Forensic. 10. Deep
Learning for Fetal Anomaly Detection. 11. Digital Detectors in Medicine.
12. Deep Learning for Plant Phytology.
1. Introduction. 2. Machine Learning for Signal Analysis. 3. Deep Learning
for Cancer Detection. 4. Deep Learning for Diabetic Cases. 5. Deep Learning
for Blood Sample Images. 6. Deep Learning for Skin Image Analysis. 7. Deep
Learning for Alzheimer's Diseases Detection. 8. Deep Leaning for Coronary
Disease Detection. 9. Deep Learning for Medical Image Forensic. 10. Deep
Learning for Fetal Anomaly Detection. 11. Digital Detectors in Medicine.
12. Deep Learning for Plant Phytology.
for Cancer Detection. 4. Deep Learning for Diabetic Cases. 5. Deep Learning
for Blood Sample Images. 6. Deep Learning for Skin Image Analysis. 7. Deep
Learning for Alzheimer's Diseases Detection. 8. Deep Leaning for Coronary
Disease Detection. 9. Deep Learning for Medical Image Forensic. 10. Deep
Learning for Fetal Anomaly Detection. 11. Digital Detectors in Medicine.
12. Deep Learning for Plant Phytology.