Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The definitive guide to energy storage technologies and their pivotal applications in the development of a low-carbon energy infrastructure The comprehensive three-volume reference, Energy Storage Handbook addresses a wide variety of energy storage utilizing the fundamental energy conversion method. The work covers the basic principles, materials, construction, device operation and system level performance through applications, standards and commercial status. Hybrid applications of energy storage technologies are also covered. With contributions from noted experts in the field, the methods…mehr
The definitive guide to energy storage technologies and their pivotal applications in the development of a low-carbon energy infrastructure The comprehensive three-volume reference, Energy Storage Handbook addresses a wide variety of energy storage utilizing the fundamental energy conversion method. The work covers the basic principles, materials, construction, device operation and system level performance through applications, standards and commercial status. Hybrid applications of energy storage technologies are also covered. With contributions from noted experts in the field, the methods explored include electrochemical, chemical energy, thermal energy, mechanical energy and superconducting magnetic energy storage. The work also offers insight into current policy instruments and future trends that help to both support and stimulate energy storage utilisation, and the public acceptability and perception of energy storage technologies across a wide field of end users. This important reference: * Includes an in-depth review of single-source treatment of all energy technologies across each storage category including electrochemical, chemical, thermal, mechanical, pumped hydro, compressed air, flywheels and superconducting magnetic and corresponding applications * Examines specific energy technologies structured systematically including cross-references to hybrid applications * Helps to facilitate selection of energy store type optimising the temporal requirements of the application, the energy capacity versus power capability, cost, safety and reliability concerns Aimed at practising professionals, researchers and graduate students in electrical and mechanical engineering and materials science, the three-volume set of Energy Storage Handbook contains the most recent research and effective applications of energy storage technologies.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Andreas Hauer studied Physics at the Ludwig-Maximilians-University in Munich, Germany, and completed his PhD at the Technical University in Berlin. He is currently Director of the Bavarian Center for Applied Energy Research, ZAE Bayern, where he is responsible for a number of national and international research projects. Dr. Hauer is an internationally renowned expert on energy storage systems in general, specializing in thermal energy storage.
Inhaltsangabe
List of Contributors xxi
1 Energy Storage Solutions for Future Energy Systems 1 Andreas Hauer
1.1 The Role of Energy Storage 1
1.2 The Definition of Energy Storage 1
1.3 Technologies for Energy Storage 5
1.4 Applications for Energy Storage 11
Part I Electrochemical, Electrical, and Super Magnetic Energy Storages 15
2 An Introduction to Electrochemistry in Modern Power Sources 17 Frank C. Walsh, Andrew Cruden, and Peter J. Hall
2.1 Introduction 17
2.2 Electrode Reactions 17
2.3 Electrochemical Cells 18
2.4 The Case for Electrochemical Power Sources 19
2.5 The Thermodynamics of Electrochemical Cells 20
2.6 The Actual Cell Voltage: Thermodynamic, Electrode Kinetic, and Ohmic Losses 20
2.7 Faraday's Laws and Charge Capacity 22
2.8 The Performance of Cells: Charge Capacity and Specific Energy Capability 23
2.9 Types of Electrochemical Device for Energy Conversion 23
3 Standalone Batteries for Power Backup and Energy Storage 31 Declan Bryans, Martin R Jiminez, Jennifer M Maxwell, Jon M Mitxelena, David Kerr, and Léonard E A Berlouis
3.1 Introduction 31
3.2 Standalone Battery Technologies 31
3.3 Comparisons 54
3.4 Conclusions 54
4 Environmental Aspects and Recycling of Battery Materials 61 Guangjin Zhao
4.1 Introduction 61
4.2 Classical Batteries 63
4.3 Summary 64
4.4 Future Perspectives 64
4.5 Future Developments 68
5 Supercapacitors for Short-term, High Power Energy Storage 71 Lingbin Kong, Maocheng Liu, Jianyun Cao, Rutao Wang, Weibin Zhang, Kun Yan, Xiaohong Li, and Frank C. Walsh
5.1 Introduction 71
5.2 Electrode Materials 73
5.3 Supercapacitor Devices 80
5.4 Conclusions 88
5.5 Outlook 89
6 Overview of Superconducting Magnetic Energy Storage Technology 99 Jing Shi, Xiao Zhou, Yang Liu, Li Ren, Yuejin Tang, and Shijie Chen
6.1 Introduction 99
6.2 The Principle of SMES 99
6.3 Development Status of SMES 102
6.4 Development Trend of SMES 104
6.5 Research Topics for Developing SMES 107
6.6 Conclusions 109
7 Key Technologies of Superconducting Magnets for SMES 113 Ying Xu, Li Ren, Jing Shi, and Yuejin Tang
7.1 Introduction 113
7.2 The Development of SMES Magnets 116
7.3 Considerations in the Design of SMES Magnets 119
7.4 Current Leads of SMES Magnets 124
7.5 Quench Protection for SMES Magnets 128
7.6 Summary 132
8 Testing Technologies for Developing SMES 135 Jing Shi, Yuxiang Liao, Lihui Zhang, Ying Xu, Li Ren, Jingdong Li, and Yuejin Tang
8.1 Introduction 135
8.2 HTS Tape Property Test Method 135
8.3 Magnet Coils Experimental Methods 138
8.4 SMES Test 140
8.5 Conclusions 147
9 Superconducting Wires and Tapes for SMES 149 Yuejin Tang, Ying Xu, Sinian Yan, Feng Feng, and Guo Yan
9.1 Introduction 149
9.2 A Brief Explanation of Superconductivity 150
9.3 Wires Made from LTc Superconductors 157
9.4 Wires or Tapes Made from HTc Superconductors 158
9.5 Discussion 162
10 Cryogenic Technology 165 Li Ren, Ying Xu, and Yuejin Tang
10.1 Introduction 165
10.2 Cryogens 166
10.3 Cryo-cooler 170
10.4 Cryogenic System 173
10.5 Vacuum Technology 176
10.6 An Evaluation Method for Conduction-cooled SMES Cryogenic Cooling Systems 178
1 Energy Storage Solutions for Future Energy Systems 1 Andreas Hauer
1.1 The Role of Energy Storage 1
1.2 The Definition of Energy Storage 1
1.3 Technologies for Energy Storage 5
1.4 Applications for Energy Storage 11
Part I Electrochemical, Electrical, and Super Magnetic Energy Storages 15
2 An Introduction to Electrochemistry in Modern Power Sources 17 Frank C. Walsh, Andrew Cruden, and Peter J. Hall
2.1 Introduction 17
2.2 Electrode Reactions 17
2.3 Electrochemical Cells 18
2.4 The Case for Electrochemical Power Sources 19
2.5 The Thermodynamics of Electrochemical Cells 20
2.6 The Actual Cell Voltage: Thermodynamic, Electrode Kinetic, and Ohmic Losses 20
2.7 Faraday's Laws and Charge Capacity 22
2.8 The Performance of Cells: Charge Capacity and Specific Energy Capability 23
2.9 Types of Electrochemical Device for Energy Conversion 23
3 Standalone Batteries for Power Backup and Energy Storage 31 Declan Bryans, Martin R Jiminez, Jennifer M Maxwell, Jon M Mitxelena, David Kerr, and Léonard E A Berlouis
3.1 Introduction 31
3.2 Standalone Battery Technologies 31
3.3 Comparisons 54
3.4 Conclusions 54
4 Environmental Aspects and Recycling of Battery Materials 61 Guangjin Zhao
4.1 Introduction 61
4.2 Classical Batteries 63
4.3 Summary 64
4.4 Future Perspectives 64
4.5 Future Developments 68
5 Supercapacitors for Short-term, High Power Energy Storage 71 Lingbin Kong, Maocheng Liu, Jianyun Cao, Rutao Wang, Weibin Zhang, Kun Yan, Xiaohong Li, and Frank C. Walsh
5.1 Introduction 71
5.2 Electrode Materials 73
5.3 Supercapacitor Devices 80
5.4 Conclusions 88
5.5 Outlook 89
6 Overview of Superconducting Magnetic Energy Storage Technology 99 Jing Shi, Xiao Zhou, Yang Liu, Li Ren, Yuejin Tang, and Shijie Chen
6.1 Introduction 99
6.2 The Principle of SMES 99
6.3 Development Status of SMES 102
6.4 Development Trend of SMES 104
6.5 Research Topics for Developing SMES 107
6.6 Conclusions 109
7 Key Technologies of Superconducting Magnets for SMES 113 Ying Xu, Li Ren, Jing Shi, and Yuejin Tang
7.1 Introduction 113
7.2 The Development of SMES Magnets 116
7.3 Considerations in the Design of SMES Magnets 119
7.4 Current Leads of SMES Magnets 124
7.5 Quench Protection for SMES Magnets 128
7.6 Summary 132
8 Testing Technologies for Developing SMES 135 Jing Shi, Yuxiang Liao, Lihui Zhang, Ying Xu, Li Ren, Jingdong Li, and Yuejin Tang
8.1 Introduction 135
8.2 HTS Tape Property Test Method 135
8.3 Magnet Coils Experimental Methods 138
8.4 SMES Test 140
8.5 Conclusions 147
9 Superconducting Wires and Tapes for SMES 149 Yuejin Tang, Ying Xu, Sinian Yan, Feng Feng, and Guo Yan
9.1 Introduction 149
9.2 A Brief Explanation of Superconductivity 150
9.3 Wires Made from LTc Superconductors 157
9.4 Wires or Tapes Made from HTc Superconductors 158
9.5 Discussion 162
10 Cryogenic Technology 165 Li Ren, Ying Xu, and Yuejin Tang
10.1 Introduction 165
10.2 Cryogens 166
10.3 Cryo-cooler 170
10.4 Cryogenic System 173
10.5 Vacuum Technology 176
10.6 An Evaluation Method for Conduction-cooled SMES Cryogenic Cooling Systems 178
10.7 Case Study 181
11 C
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826