Dan Gabriel Cacuci
Advances in High-Order Predictive Modeling (eBook, ePUB)
Methodologies and Illustrative Problems
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Dan Gabriel Cacuci
Advances in High-Order Predictive Modeling (eBook, ePUB)
Methodologies and Illustrative Problems
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Continuing the author's previous work on modeling, this book presents the most recent advances in high-order predictive modeling.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Dan Gabriel CacuciAdvances in High-Order Predictive Modeling (eBook, PDF)52,95 €
- Handbook of Mathematical Functions (eBook, ePUB)26,95 €
- Mark HunacekQuantitative Literacy Through Games and Gambling (eBook, ePUB)45,95 €
- Introduction to Linear Programming (eBook, ePUB)102,95 €
- A. IserlesOrder Stars (eBook, ePUB)259,95 €
- Brian CafarellaBreaking Barriers (eBook, ePUB)27,95 €
- Charles ParsonsOn Constructive Interpretation of Predictive Mathematics (1990) (eBook, ePUB)26,95 €
-
-
-
Continuing the author's previous work on modeling, this book presents the most recent advances in high-order predictive modeling.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Erscheinungstermin: 11. Dezember 2024
- Englisch
- ISBN-13: 9781040193228
- Artikelnr.: 72275795
- Verlag: Taylor & Francis
- Erscheinungstermin: 11. Dezember 2024
- Englisch
- ISBN-13: 9781040193228
- Artikelnr.: 72275795
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dan Gabriel Cacuci is a Distinguished Professor Emeritus in the Department of Mechanical Engineering at the University of South Carolina and the Karlsruhe Institute of Technology, Germany. He received his PhD in applied physics, mechanical and nuclear engineering from Columbia University. He is also the recipient of many awards including four honorary doctorates, the Ernest Orlando Lawrence Memorial award from the U.S. Deptartment of Energy and the Arthur Holly Compton, Eugene P. Wigner and the Glenn Seaborg Awards from the American Nuclear Society. He was named an "Inaugural Highly Ranked Scholar" by Scholar GPS, being ranked #2 in the world in the field of Uncertainty Analysis, #5 in the world in the field of Sensitivity Analysis, and ranked in the top 0.05% of all scholars worldwide.
This is Dr. Cacuci's fifth book for CRC Press. The others include, The Second-Order Adjoint Sensitivity Analysis Methodology (2018); Computational Methods for Data Evaluation and Assimilation with Ionel Michael Navon and Mihaela Ionescu-Bujor (2013); Sensitivity and Uncertainty Analysis, Volume I Applications to Large-Scale Systems (2003) and Volume II (2005) also with Mihaela Ionescu-Bujor and Michael Navon.
.
This is Dr. Cacuci's fifth book for CRC Press. The others include, The Second-Order Adjoint Sensitivity Analysis Methodology (2018); Computational Methods for Data Evaluation and Assimilation with Ionel Michael Navon and Mihaela Ionescu-Bujor (2013); Sensitivity and Uncertainty Analysis, Volume I Applications to Large-Scale Systems (2003) and Volume II (2005) also with Mihaela Ionescu-Bujor and Michael Navon.
.
CHAPTER 1: 2nd-BERRU-PM: Second-Order Maximum Entropy Predictive Modeling
Methodology for Reducing Uncertainties in Predicted Model Responses and
Parameters
1.1. Introduction
1.2. Generic Mathematical Modeling of a Physical System
1.3. Construction of the Minimally Discrepant Maximum Entropy Distribution
1.4. Construction of the Second-Order Minimally Discrepant Maximum Entropy
Distribution of Experimentally Measured Responses and Parameters
Practical Case 2nd-BERRU-PMP: Inclusion of Response Measurements
Inter-Comparison: 2nd-BERRU-PMP vs. 2nd-BERRU-PMD
1.7.1.
1.7.2.
1.7.3.
1.7.4. Inter-Comparison:
1.7.5. Inter-Comparison:
1.8. Review of Principles Underlying the Data Adjustment and Data
Assimilation Procedures
1.8.1. Principles Underlying the Data Adjustment Procedure
1.8.2. Principles Underlying the Data Assimilation Procedure
1.9. Discussion and Conclusions
CHAPTER 2: Application of the 2nd-BERRU-PM Methodology to the PERP Reactor
Physics Benchmark
2.1. Introduction
2.2. Mathematical Modeling of the
2.3:
2.3.1. "High precision" parameters; uniform relative standard deviations
2.3.2. "Typical precision" parameters; uniform relative standard deviations
2.3.3. "Low precision" parameters; uniform relative standard deviations
2.4: Illustrative Application of the 2nd-BERRU-PM Methodology to the PERP
Benchmark: Mathematical Expressions for the Best Estimate Predicted Mean
and Variance for the PERP Leakage Response
2.4.1. Best-Estimate Predicted Mean Value, , for the PERP Leakage Response
2.4.2. Best-Estimate Predicted Standard Deviation for PERP Leakage Response
2.5: Typical-Precision Consistent Measured Response (neutrons/sec; )
2.5.1. High-precision (3% relative standard deviations) parameters
2.5.2: Typical precision (5% relative standard deviations) parameters
2.5.3. Low precision (10% relative standard deviations) parameters
2.6: Low-Precision Consistent Measured Response (neutrons/sec; ); High
Precision Parameters (relative SD=3%)
2.7: Typical-Precision Inconsistent Measured Response ( neutrons/sec;
)
2.7.1. High-precision (2% relative standard deviations) parameters
2.7.2. Typical-precision (5% relative standard deviations) parameters
2.7.3. Low-precision (10% relative standard deviations) parameters
2.8: High-Precision Apparently Inconsistent Measured Response (
neutrons/sec; ) and High Precision Parameters (SD=3%)
2.8.1. Including Only Contributions from the 1st -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.8.2. Including Contributions from the 1st + 2nd -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.8.3. Including Contributions from the 1st + 2nd + 3rd-Order Sensitivities
of the Leakage Response to the Total Cross Sections
2.8.4. Including Contributions from the 1st + 2nd + 3rd + 4th -Order
Sensitivities of the Leakage Response to the Total Cross Sections
2.9: High-Precision Possibly Inconsistent Measured Response ( neutrons/sec;
) and Low Precision Parameters (SD=10%)
2.9.1. Including Only Contributions from the 1st -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.9.2. Including Contributions from the 1st + 2nd -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.10: Low-Precision Apparently Inconsistent Measured Response (
neutrons/sec; ); Typical Precision Parameters (SD=5%)
2.10.1. Including Only Contributions from the 1st -Order Sensitivities of
the Leakage Response to All Important Parameters
2.10.2. Including Contributions from the 1st + 2nd -Order Sensitivities of
the Leakage Response to All Important Parameters
2.10.3. Including Contributions from the 1st + 2nd + 3rd-Order
Sensitivities of the Leakage Response to the Total Cross Sections
2.10.4. Including Contributions from the 1st + 2nd + 3rd + 4th -Order
Sensitivities of the Leakage Response to the Total Cross Sections
2.11: Measured Response Value Coincides with Nominally Computed Response
Value
2.12. Concluding Remarks
CHAPTER 3: A Novel Generic Fourth-Order Moment-Constrained Maximum Entropy
Distribution
3.1. Introduction
3.2. Construction of the Fourth-Order Moment-Constrained Maximum Entropy
(MaxEnt) Representation of Uncertain Multivariate Quantities
3.3. Concluding Remarks
Appendix 3.A. Auxiliary Computations for Constructing the
Moment-Constrained Fourth-Order MaxEnt Distribution
Appendix 3.B. Approximations Inherent to the Fourth-Order Maximum Entropy
Distribution
CHAPTER 4: 4th-BERRU-PM: Fourth-Order Maxent Predictive Modeling
Methodology for Combining Measurements with Computations to Obtain
Best-Estimate Results with Reduced Predicted Uncertainties
4.1. Introduction
4.2. Construction of the Moments-Constrained Fourth-Order MaxEnt
Distribution of the Computational Model Parameters and Responses
4.3. Mathematical Framework of the 4th-BERRU-PM Methodology for Obtaining
Best Estimate Results with reduced Uncertainties
4.3.1. Best-Estimate Fourth-Order Expression of the Vector of Mean Values
of the Predicted Responses
4.3.2. Best-Estimate Fourth-Order Expression of the Vector of Mean Values
of the Predicted Calibrated Model Parameters
4.3.3. Best-Estimate Fourth-Order Expression of the Covariance Matrix of
the Predicted Responses
4.3.4. Best-Estimate Fourth-Order Expression of the Covariance Matrix of
the Calibrated Model Parameters
4.3.5. Best-Estimate Fourth-Order Expression of the Correlation Matrix of
the Predicted Responses and Calibrated Model Parameters
4.3.6. Best-Estimate Fourth-Order Expression of the Triple Correlations
among Predicted Responses and Calibrated Model Parameters
4.3.7. Best-Estimate Fourth-Order Expression of the Quadruple Correlations
among Predicted Responses and Calibrated Model Parameters
4.3.8. Indicator of Consistency among Parameters and Responses
4.4. Conclusions
Appendix 4.A. Auxiliary Computations for Constructing the Fourth-Order
Maximum Entropy Distribution for Model Parameters and Responses
5.1. Introduction
5.2. 4th-BERRU-PM Predicted Best-Estimate Posterior Mean and Variance for
the PERP Leakage Response
5.2.1. Low Precision (Standard Deviation=10%) Measurement of the Leakage
Response
5.2.1.a. "High precision" parameters (relative standard deviations )
5.2.1.b. "Typical precision" parameters (relative standard deviations )
5.2.1.c. "Low precision" parameters (standard deviations )
5.2.2. Typical Precision (Standard Deviation=5%) Measurement of the Leakage
Response
5.2.2.a. "High" precision parameters (relative standard deviations )
5.2.2.b. "Typical" precision parameters (relative standard deviations )
5.3. 4th-BERRU-PM Best-Estimate Posterior Mean Values of Calibrated Model
Parameters
5.3.1. "High" precision parameters (relative standard deviations )
5.3.2. "Typical" precision parameters (relative standard deviations )
5.4. 4th-BERRU-PM Best-Estimate Posterior Correlations Between Predicted
Responses and Calibrated Model Parameters
5.4.1. "High" precision parameters (relative standard deviations )
5.4.2. "Typical precision" parameters (relative standard deviations )
5.5. 4th-BERRU-PM Best-Estimate Posterior Covariance Matrix of Calibrated
Model Parameters
5.5.1. "High" precision parameters (relative standard deviations )
5.5.2. "Typical" precision parameters (relative standard deviations )
5.5.3. "Low" precision parameters (relative standard deviations ); "low"
precision measurement ()
5.6. 4th-BERRU-PM Best-Estimate Posterior Skewness of Predicted Responses
and Calibrated Model Parameters
5.7. 4th-BERRU-PM Best-Estimate Posterior Kurtosis of Predicted Responses
and Calibrated Model Parameters
5.8. Concluding Remarks
CHAPTER 6: Fourth-Order Comprehensive Adjoint Sensitivity Analysis
Methodology: Mathematical Framework
6.1. Introduction
6.2. First-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.3. Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.4. Third-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.5. Fourth-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.6. Concluding Remarks
CHAPTER 7: Polyethylene Reflected Plutonium (PERP) Reactor Physics
Benchmark: Sensitivities of the Neutron Leakage Response to Total Cross
Sections
7.1. Introduction
7.2. Computation of First-Order Sensitivities
7.3. Computation of Second-Order Sensitivities
7.4. Computation of Third-Order Sensitivities
7.5. Computation of Fourth-Order Sensitivities
7.7. Concluding Remarks
Methodology for Reducing Uncertainties in Predicted Model Responses and
Parameters
1.1. Introduction
1.2. Generic Mathematical Modeling of a Physical System
1.3. Construction of the Minimally Discrepant Maximum Entropy Distribution
1.4. Construction of the Second-Order Minimally Discrepant Maximum Entropy
Distribution of Experimentally Measured Responses and Parameters
Practical Case 2nd-BERRU-PMP: Inclusion of Response Measurements
Inter-Comparison: 2nd-BERRU-PMP vs. 2nd-BERRU-PMD
1.7.1.
1.7.2.
1.7.3.
1.7.4. Inter-Comparison:
1.7.5. Inter-Comparison:
1.8. Review of Principles Underlying the Data Adjustment and Data
Assimilation Procedures
1.8.1. Principles Underlying the Data Adjustment Procedure
1.8.2. Principles Underlying the Data Assimilation Procedure
1.9. Discussion and Conclusions
CHAPTER 2: Application of the 2nd-BERRU-PM Methodology to the PERP Reactor
Physics Benchmark
2.1. Introduction
2.2. Mathematical Modeling of the
2.3:
2.3.1. "High precision" parameters; uniform relative standard deviations
2.3.2. "Typical precision" parameters; uniform relative standard deviations
2.3.3. "Low precision" parameters; uniform relative standard deviations
2.4: Illustrative Application of the 2nd-BERRU-PM Methodology to the PERP
Benchmark: Mathematical Expressions for the Best Estimate Predicted Mean
and Variance for the PERP Leakage Response
2.4.1. Best-Estimate Predicted Mean Value, , for the PERP Leakage Response
2.4.2. Best-Estimate Predicted Standard Deviation for PERP Leakage Response
2.5: Typical-Precision Consistent Measured Response (neutrons/sec; )
2.5.1. High-precision (3% relative standard deviations) parameters
2.5.2: Typical precision (5% relative standard deviations) parameters
2.5.3. Low precision (10% relative standard deviations) parameters
2.6: Low-Precision Consistent Measured Response (neutrons/sec; ); High
Precision Parameters (relative SD=3%)
2.7: Typical-Precision Inconsistent Measured Response ( neutrons/sec;
)
2.7.1. High-precision (2% relative standard deviations) parameters
2.7.2. Typical-precision (5% relative standard deviations) parameters
2.7.3. Low-precision (10% relative standard deviations) parameters
2.8: High-Precision Apparently Inconsistent Measured Response (
neutrons/sec; ) and High Precision Parameters (SD=3%)
2.8.1. Including Only Contributions from the 1st -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.8.2. Including Contributions from the 1st + 2nd -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.8.3. Including Contributions from the 1st + 2nd + 3rd-Order Sensitivities
of the Leakage Response to the Total Cross Sections
2.8.4. Including Contributions from the 1st + 2nd + 3rd + 4th -Order
Sensitivities of the Leakage Response to the Total Cross Sections
2.9: High-Precision Possibly Inconsistent Measured Response ( neutrons/sec;
) and Low Precision Parameters (SD=10%)
2.9.1. Including Only Contributions from the 1st -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.9.2. Including Contributions from the 1st + 2nd -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.10: Low-Precision Apparently Inconsistent Measured Response (
neutrons/sec; ); Typical Precision Parameters (SD=5%)
2.10.1. Including Only Contributions from the 1st -Order Sensitivities of
the Leakage Response to All Important Parameters
2.10.2. Including Contributions from the 1st + 2nd -Order Sensitivities of
the Leakage Response to All Important Parameters
2.10.3. Including Contributions from the 1st + 2nd + 3rd-Order
Sensitivities of the Leakage Response to the Total Cross Sections
2.10.4. Including Contributions from the 1st + 2nd + 3rd + 4th -Order
Sensitivities of the Leakage Response to the Total Cross Sections
2.11: Measured Response Value Coincides with Nominally Computed Response
Value
2.12. Concluding Remarks
CHAPTER 3: A Novel Generic Fourth-Order Moment-Constrained Maximum Entropy
Distribution
3.1. Introduction
3.2. Construction of the Fourth-Order Moment-Constrained Maximum Entropy
(MaxEnt) Representation of Uncertain Multivariate Quantities
3.3. Concluding Remarks
Appendix 3.A. Auxiliary Computations for Constructing the
Moment-Constrained Fourth-Order MaxEnt Distribution
Appendix 3.B. Approximations Inherent to the Fourth-Order Maximum Entropy
Distribution
CHAPTER 4: 4th-BERRU-PM: Fourth-Order Maxent Predictive Modeling
Methodology for Combining Measurements with Computations to Obtain
Best-Estimate Results with Reduced Predicted Uncertainties
4.1. Introduction
4.2. Construction of the Moments-Constrained Fourth-Order MaxEnt
Distribution of the Computational Model Parameters and Responses
4.3. Mathematical Framework of the 4th-BERRU-PM Methodology for Obtaining
Best Estimate Results with reduced Uncertainties
4.3.1. Best-Estimate Fourth-Order Expression of the Vector of Mean Values
of the Predicted Responses
4.3.2. Best-Estimate Fourth-Order Expression of the Vector of Mean Values
of the Predicted Calibrated Model Parameters
4.3.3. Best-Estimate Fourth-Order Expression of the Covariance Matrix of
the Predicted Responses
4.3.4. Best-Estimate Fourth-Order Expression of the Covariance Matrix of
the Calibrated Model Parameters
4.3.5. Best-Estimate Fourth-Order Expression of the Correlation Matrix of
the Predicted Responses and Calibrated Model Parameters
4.3.6. Best-Estimate Fourth-Order Expression of the Triple Correlations
among Predicted Responses and Calibrated Model Parameters
4.3.7. Best-Estimate Fourth-Order Expression of the Quadruple Correlations
among Predicted Responses and Calibrated Model Parameters
4.3.8. Indicator of Consistency among Parameters and Responses
4.4. Conclusions
Appendix 4.A. Auxiliary Computations for Constructing the Fourth-Order
Maximum Entropy Distribution for Model Parameters and Responses
5.1. Introduction
5.2. 4th-BERRU-PM Predicted Best-Estimate Posterior Mean and Variance for
the PERP Leakage Response
5.2.1. Low Precision (Standard Deviation=10%) Measurement of the Leakage
Response
5.2.1.a. "High precision" parameters (relative standard deviations )
5.2.1.b. "Typical precision" parameters (relative standard deviations )
5.2.1.c. "Low precision" parameters (standard deviations )
5.2.2. Typical Precision (Standard Deviation=5%) Measurement of the Leakage
Response
5.2.2.a. "High" precision parameters (relative standard deviations )
5.2.2.b. "Typical" precision parameters (relative standard deviations )
5.3. 4th-BERRU-PM Best-Estimate Posterior Mean Values of Calibrated Model
Parameters
5.3.1. "High" precision parameters (relative standard deviations )
5.3.2. "Typical" precision parameters (relative standard deviations )
5.4. 4th-BERRU-PM Best-Estimate Posterior Correlations Between Predicted
Responses and Calibrated Model Parameters
5.4.1. "High" precision parameters (relative standard deviations )
5.4.2. "Typical precision" parameters (relative standard deviations )
5.5. 4th-BERRU-PM Best-Estimate Posterior Covariance Matrix of Calibrated
Model Parameters
5.5.1. "High" precision parameters (relative standard deviations )
5.5.2. "Typical" precision parameters (relative standard deviations )
5.5.3. "Low" precision parameters (relative standard deviations ); "low"
precision measurement ()
5.6. 4th-BERRU-PM Best-Estimate Posterior Skewness of Predicted Responses
and Calibrated Model Parameters
5.7. 4th-BERRU-PM Best-Estimate Posterior Kurtosis of Predicted Responses
and Calibrated Model Parameters
5.8. Concluding Remarks
CHAPTER 6: Fourth-Order Comprehensive Adjoint Sensitivity Analysis
Methodology: Mathematical Framework
6.1. Introduction
6.2. First-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.3. Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.4. Third-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.5. Fourth-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.6. Concluding Remarks
CHAPTER 7: Polyethylene Reflected Plutonium (PERP) Reactor Physics
Benchmark: Sensitivities of the Neutron Leakage Response to Total Cross
Sections
7.1. Introduction
7.2. Computation of First-Order Sensitivities
7.3. Computation of Second-Order Sensitivities
7.4. Computation of Third-Order Sensitivities
7.5. Computation of Fourth-Order Sensitivities
7.7. Concluding Remarks
CHAPTER 1: 2nd-BERRU-PM: Second-Order Maximum Entropy Predictive Modeling
Methodology for Reducing Uncertainties in Predicted Model Responses and
Parameters
1.1. Introduction
1.2. Generic Mathematical Modeling of a Physical System
1.3. Construction of the Minimally Discrepant Maximum Entropy Distribution
1.4. Construction of the Second-Order Minimally Discrepant Maximum Entropy
Distribution of Experimentally Measured Responses and Parameters
Practical Case 2nd-BERRU-PMP: Inclusion of Response Measurements
Inter-Comparison: 2nd-BERRU-PMP vs. 2nd-BERRU-PMD
1.7.1.
1.7.2.
1.7.3.
1.7.4. Inter-Comparison:
1.7.5. Inter-Comparison:
1.8. Review of Principles Underlying the Data Adjustment and Data
Assimilation Procedures
1.8.1. Principles Underlying the Data Adjustment Procedure
1.8.2. Principles Underlying the Data Assimilation Procedure
1.9. Discussion and Conclusions
CHAPTER 2: Application of the 2nd-BERRU-PM Methodology to the PERP Reactor
Physics Benchmark
2.1. Introduction
2.2. Mathematical Modeling of the
2.3:
2.3.1. "High precision" parameters; uniform relative standard deviations
2.3.2. "Typical precision" parameters; uniform relative standard deviations
2.3.3. "Low precision" parameters; uniform relative standard deviations
2.4: Illustrative Application of the 2nd-BERRU-PM Methodology to the PERP
Benchmark: Mathematical Expressions for the Best Estimate Predicted Mean
and Variance for the PERP Leakage Response
2.4.1. Best-Estimate Predicted Mean Value, , for the PERP Leakage Response
2.4.2. Best-Estimate Predicted Standard Deviation for PERP Leakage Response
2.5: Typical-Precision Consistent Measured Response (neutrons/sec; )
2.5.1. High-precision (3% relative standard deviations) parameters
2.5.2: Typical precision (5% relative standard deviations) parameters
2.5.3. Low precision (10% relative standard deviations) parameters
2.6: Low-Precision Consistent Measured Response (neutrons/sec; ); High
Precision Parameters (relative SD=3%)
2.7: Typical-Precision Inconsistent Measured Response ( neutrons/sec;
)
2.7.1. High-precision (2% relative standard deviations) parameters
2.7.2. Typical-precision (5% relative standard deviations) parameters
2.7.3. Low-precision (10% relative standard deviations) parameters
2.8: High-Precision Apparently Inconsistent Measured Response (
neutrons/sec; ) and High Precision Parameters (SD=3%)
2.8.1. Including Only Contributions from the 1st -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.8.2. Including Contributions from the 1st + 2nd -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.8.3. Including Contributions from the 1st + 2nd + 3rd-Order Sensitivities
of the Leakage Response to the Total Cross Sections
2.8.4. Including Contributions from the 1st + 2nd + 3rd + 4th -Order
Sensitivities of the Leakage Response to the Total Cross Sections
2.9: High-Precision Possibly Inconsistent Measured Response ( neutrons/sec;
) and Low Precision Parameters (SD=10%)
2.9.1. Including Only Contributions from the 1st -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.9.2. Including Contributions from the 1st + 2nd -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.10: Low-Precision Apparently Inconsistent Measured Response (
neutrons/sec; ); Typical Precision Parameters (SD=5%)
2.10.1. Including Only Contributions from the 1st -Order Sensitivities of
the Leakage Response to All Important Parameters
2.10.2. Including Contributions from the 1st + 2nd -Order Sensitivities of
the Leakage Response to All Important Parameters
2.10.3. Including Contributions from the 1st + 2nd + 3rd-Order
Sensitivities of the Leakage Response to the Total Cross Sections
2.10.4. Including Contributions from the 1st + 2nd + 3rd + 4th -Order
Sensitivities of the Leakage Response to the Total Cross Sections
2.11: Measured Response Value Coincides with Nominally Computed Response
Value
2.12. Concluding Remarks
CHAPTER 3: A Novel Generic Fourth-Order Moment-Constrained Maximum Entropy
Distribution
3.1. Introduction
3.2. Construction of the Fourth-Order Moment-Constrained Maximum Entropy
(MaxEnt) Representation of Uncertain Multivariate Quantities
3.3. Concluding Remarks
Appendix 3.A. Auxiliary Computations for Constructing the
Moment-Constrained Fourth-Order MaxEnt Distribution
Appendix 3.B. Approximations Inherent to the Fourth-Order Maximum Entropy
Distribution
CHAPTER 4: 4th-BERRU-PM: Fourth-Order Maxent Predictive Modeling
Methodology for Combining Measurements with Computations to Obtain
Best-Estimate Results with Reduced Predicted Uncertainties
4.1. Introduction
4.2. Construction of the Moments-Constrained Fourth-Order MaxEnt
Distribution of the Computational Model Parameters and Responses
4.3. Mathematical Framework of the 4th-BERRU-PM Methodology for Obtaining
Best Estimate Results with reduced Uncertainties
4.3.1. Best-Estimate Fourth-Order Expression of the Vector of Mean Values
of the Predicted Responses
4.3.2. Best-Estimate Fourth-Order Expression of the Vector of Mean Values
of the Predicted Calibrated Model Parameters
4.3.3. Best-Estimate Fourth-Order Expression of the Covariance Matrix of
the Predicted Responses
4.3.4. Best-Estimate Fourth-Order Expression of the Covariance Matrix of
the Calibrated Model Parameters
4.3.5. Best-Estimate Fourth-Order Expression of the Correlation Matrix of
the Predicted Responses and Calibrated Model Parameters
4.3.6. Best-Estimate Fourth-Order Expression of the Triple Correlations
among Predicted Responses and Calibrated Model Parameters
4.3.7. Best-Estimate Fourth-Order Expression of the Quadruple Correlations
among Predicted Responses and Calibrated Model Parameters
4.3.8. Indicator of Consistency among Parameters and Responses
4.4. Conclusions
Appendix 4.A. Auxiliary Computations for Constructing the Fourth-Order
Maximum Entropy Distribution for Model Parameters and Responses
5.1. Introduction
5.2. 4th-BERRU-PM Predicted Best-Estimate Posterior Mean and Variance for
the PERP Leakage Response
5.2.1. Low Precision (Standard Deviation=10%) Measurement of the Leakage
Response
5.2.1.a. "High precision" parameters (relative standard deviations )
5.2.1.b. "Typical precision" parameters (relative standard deviations )
5.2.1.c. "Low precision" parameters (standard deviations )
5.2.2. Typical Precision (Standard Deviation=5%) Measurement of the Leakage
Response
5.2.2.a. "High" precision parameters (relative standard deviations )
5.2.2.b. "Typical" precision parameters (relative standard deviations )
5.3. 4th-BERRU-PM Best-Estimate Posterior Mean Values of Calibrated Model
Parameters
5.3.1. "High" precision parameters (relative standard deviations )
5.3.2. "Typical" precision parameters (relative standard deviations )
5.4. 4th-BERRU-PM Best-Estimate Posterior Correlations Between Predicted
Responses and Calibrated Model Parameters
5.4.1. "High" precision parameters (relative standard deviations )
5.4.2. "Typical precision" parameters (relative standard deviations )
5.5. 4th-BERRU-PM Best-Estimate Posterior Covariance Matrix of Calibrated
Model Parameters
5.5.1. "High" precision parameters (relative standard deviations )
5.5.2. "Typical" precision parameters (relative standard deviations )
5.5.3. "Low" precision parameters (relative standard deviations ); "low"
precision measurement ()
5.6. 4th-BERRU-PM Best-Estimate Posterior Skewness of Predicted Responses
and Calibrated Model Parameters
5.7. 4th-BERRU-PM Best-Estimate Posterior Kurtosis of Predicted Responses
and Calibrated Model Parameters
5.8. Concluding Remarks
CHAPTER 6: Fourth-Order Comprehensive Adjoint Sensitivity Analysis
Methodology: Mathematical Framework
6.1. Introduction
6.2. First-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.3. Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.4. Third-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.5. Fourth-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.6. Concluding Remarks
CHAPTER 7: Polyethylene Reflected Plutonium (PERP) Reactor Physics
Benchmark: Sensitivities of the Neutron Leakage Response to Total Cross
Sections
7.1. Introduction
7.2. Computation of First-Order Sensitivities
7.3. Computation of Second-Order Sensitivities
7.4. Computation of Third-Order Sensitivities
7.5. Computation of Fourth-Order Sensitivities
7.7. Concluding Remarks
Methodology for Reducing Uncertainties in Predicted Model Responses and
Parameters
1.1. Introduction
1.2. Generic Mathematical Modeling of a Physical System
1.3. Construction of the Minimally Discrepant Maximum Entropy Distribution
1.4. Construction of the Second-Order Minimally Discrepant Maximum Entropy
Distribution of Experimentally Measured Responses and Parameters
Practical Case 2nd-BERRU-PMP: Inclusion of Response Measurements
Inter-Comparison: 2nd-BERRU-PMP vs. 2nd-BERRU-PMD
1.7.1.
1.7.2.
1.7.3.
1.7.4. Inter-Comparison:
1.7.5. Inter-Comparison:
1.8. Review of Principles Underlying the Data Adjustment and Data
Assimilation Procedures
1.8.1. Principles Underlying the Data Adjustment Procedure
1.8.2. Principles Underlying the Data Assimilation Procedure
1.9. Discussion and Conclusions
CHAPTER 2: Application of the 2nd-BERRU-PM Methodology to the PERP Reactor
Physics Benchmark
2.1. Introduction
2.2. Mathematical Modeling of the
2.3:
2.3.1. "High precision" parameters; uniform relative standard deviations
2.3.2. "Typical precision" parameters; uniform relative standard deviations
2.3.3. "Low precision" parameters; uniform relative standard deviations
2.4: Illustrative Application of the 2nd-BERRU-PM Methodology to the PERP
Benchmark: Mathematical Expressions for the Best Estimate Predicted Mean
and Variance for the PERP Leakage Response
2.4.1. Best-Estimate Predicted Mean Value, , for the PERP Leakage Response
2.4.2. Best-Estimate Predicted Standard Deviation for PERP Leakage Response
2.5: Typical-Precision Consistent Measured Response (neutrons/sec; )
2.5.1. High-precision (3% relative standard deviations) parameters
2.5.2: Typical precision (5% relative standard deviations) parameters
2.5.3. Low precision (10% relative standard deviations) parameters
2.6: Low-Precision Consistent Measured Response (neutrons/sec; ); High
Precision Parameters (relative SD=3%)
2.7: Typical-Precision Inconsistent Measured Response ( neutrons/sec;
)
2.7.1. High-precision (2% relative standard deviations) parameters
2.7.2. Typical-precision (5% relative standard deviations) parameters
2.7.3. Low-precision (10% relative standard deviations) parameters
2.8: High-Precision Apparently Inconsistent Measured Response (
neutrons/sec; ) and High Precision Parameters (SD=3%)
2.8.1. Including Only Contributions from the 1st -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.8.2. Including Contributions from the 1st + 2nd -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.8.3. Including Contributions from the 1st + 2nd + 3rd-Order Sensitivities
of the Leakage Response to the Total Cross Sections
2.8.4. Including Contributions from the 1st + 2nd + 3rd + 4th -Order
Sensitivities of the Leakage Response to the Total Cross Sections
2.9: High-Precision Possibly Inconsistent Measured Response ( neutrons/sec;
) and Low Precision Parameters (SD=10%)
2.9.1. Including Only Contributions from the 1st -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.9.2. Including Contributions from the 1st + 2nd -Order Sensitivities of
the Leakage Response to the Total Cross Sections
2.10: Low-Precision Apparently Inconsistent Measured Response (
neutrons/sec; ); Typical Precision Parameters (SD=5%)
2.10.1. Including Only Contributions from the 1st -Order Sensitivities of
the Leakage Response to All Important Parameters
2.10.2. Including Contributions from the 1st + 2nd -Order Sensitivities of
the Leakage Response to All Important Parameters
2.10.3. Including Contributions from the 1st + 2nd + 3rd-Order
Sensitivities of the Leakage Response to the Total Cross Sections
2.10.4. Including Contributions from the 1st + 2nd + 3rd + 4th -Order
Sensitivities of the Leakage Response to the Total Cross Sections
2.11: Measured Response Value Coincides with Nominally Computed Response
Value
2.12. Concluding Remarks
CHAPTER 3: A Novel Generic Fourth-Order Moment-Constrained Maximum Entropy
Distribution
3.1. Introduction
3.2. Construction of the Fourth-Order Moment-Constrained Maximum Entropy
(MaxEnt) Representation of Uncertain Multivariate Quantities
3.3. Concluding Remarks
Appendix 3.A. Auxiliary Computations for Constructing the
Moment-Constrained Fourth-Order MaxEnt Distribution
Appendix 3.B. Approximations Inherent to the Fourth-Order Maximum Entropy
Distribution
CHAPTER 4: 4th-BERRU-PM: Fourth-Order Maxent Predictive Modeling
Methodology for Combining Measurements with Computations to Obtain
Best-Estimate Results with Reduced Predicted Uncertainties
4.1. Introduction
4.2. Construction of the Moments-Constrained Fourth-Order MaxEnt
Distribution of the Computational Model Parameters and Responses
4.3. Mathematical Framework of the 4th-BERRU-PM Methodology for Obtaining
Best Estimate Results with reduced Uncertainties
4.3.1. Best-Estimate Fourth-Order Expression of the Vector of Mean Values
of the Predicted Responses
4.3.2. Best-Estimate Fourth-Order Expression of the Vector of Mean Values
of the Predicted Calibrated Model Parameters
4.3.3. Best-Estimate Fourth-Order Expression of the Covariance Matrix of
the Predicted Responses
4.3.4. Best-Estimate Fourth-Order Expression of the Covariance Matrix of
the Calibrated Model Parameters
4.3.5. Best-Estimate Fourth-Order Expression of the Correlation Matrix of
the Predicted Responses and Calibrated Model Parameters
4.3.6. Best-Estimate Fourth-Order Expression of the Triple Correlations
among Predicted Responses and Calibrated Model Parameters
4.3.7. Best-Estimate Fourth-Order Expression of the Quadruple Correlations
among Predicted Responses and Calibrated Model Parameters
4.3.8. Indicator of Consistency among Parameters and Responses
4.4. Conclusions
Appendix 4.A. Auxiliary Computations for Constructing the Fourth-Order
Maximum Entropy Distribution for Model Parameters and Responses
5.1. Introduction
5.2. 4th-BERRU-PM Predicted Best-Estimate Posterior Mean and Variance for
the PERP Leakage Response
5.2.1. Low Precision (Standard Deviation=10%) Measurement of the Leakage
Response
5.2.1.a. "High precision" parameters (relative standard deviations )
5.2.1.b. "Typical precision" parameters (relative standard deviations )
5.2.1.c. "Low precision" parameters (standard deviations )
5.2.2. Typical Precision (Standard Deviation=5%) Measurement of the Leakage
Response
5.2.2.a. "High" precision parameters (relative standard deviations )
5.2.2.b. "Typical" precision parameters (relative standard deviations )
5.3. 4th-BERRU-PM Best-Estimate Posterior Mean Values of Calibrated Model
Parameters
5.3.1. "High" precision parameters (relative standard deviations )
5.3.2. "Typical" precision parameters (relative standard deviations )
5.4. 4th-BERRU-PM Best-Estimate Posterior Correlations Between Predicted
Responses and Calibrated Model Parameters
5.4.1. "High" precision parameters (relative standard deviations )
5.4.2. "Typical precision" parameters (relative standard deviations )
5.5. 4th-BERRU-PM Best-Estimate Posterior Covariance Matrix of Calibrated
Model Parameters
5.5.1. "High" precision parameters (relative standard deviations )
5.5.2. "Typical" precision parameters (relative standard deviations )
5.5.3. "Low" precision parameters (relative standard deviations ); "low"
precision measurement ()
5.6. 4th-BERRU-PM Best-Estimate Posterior Skewness of Predicted Responses
and Calibrated Model Parameters
5.7. 4th-BERRU-PM Best-Estimate Posterior Kurtosis of Predicted Responses
and Calibrated Model Parameters
5.8. Concluding Remarks
CHAPTER 6: Fourth-Order Comprehensive Adjoint Sensitivity Analysis
Methodology: Mathematical Framework
6.1. Introduction
6.2. First-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.3. Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.4. Third-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.5. Fourth-Order Comprehensive Adjoint Sensitivity Analysis Methodology
6.6. Concluding Remarks
CHAPTER 7: Polyethylene Reflected Plutonium (PERP) Reactor Physics
Benchmark: Sensitivities of the Neutron Leakage Response to Total Cross
Sections
7.1. Introduction
7.2. Computation of First-Order Sensitivities
7.3. Computation of Second-Order Sensitivities
7.4. Computation of Third-Order Sensitivities
7.5. Computation of Fourth-Order Sensitivities
7.7. Concluding Remarks