Advances in Knowledge Discovery and Data Mining, Part II (eBook, PDF)
14th Pacific-Asia Conference, PAKDD 2010, Hyderabad, India, June 21-24, 2010, Proceedings
Redaktion: Zaki, Mohammed J.; Pudi, Vikram; Ravindran, B.; Yu, Jeffrey Xu
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
Advances in Knowledge Discovery and Data Mining, Part II (eBook, PDF)
14th Pacific-Asia Conference, PAKDD 2010, Hyderabad, India, June 21-24, 2010, Proceedings
Redaktion: Zaki, Mohammed J.; Pudi, Vikram; Ravindran, B.; Yu, Jeffrey Xu
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 13.58MB
Andere Kunden interessierten sich auch für
- Advances in Knowledge Discovery and Data Mining, Part I (eBook, PDF)81,95 €
- Transactions on Large-Scale Data- and Knowledge-Centered Systems XXV (eBook, PDF)40,95 €
- Machine Learning and Knowledge Discovery in Databases (eBook, PDF)73,95 €
- Clustering High--Dimensional Data (eBook, PDF)32,95 €
- Machine Learning and Knowledge Discovery in Databases, Part II (eBook, PDF)40,95 €
- Transactions on Large-Scale Data- and Knowledge-Centered Systems XXVIII (eBook, PDF)40,95 €
- Transactions on Large-Scale Data- and Knowledge-Centered Systems XXIV (eBook, PDF)40,95 €
-
-
-
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 520
- Erscheinungstermin: 29. Mai 2010
- Englisch
- ISBN-13: 9783642136726
- Artikelnr.: 44615477
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 520
- Erscheinungstermin: 29. Mai 2010
- Englisch
- ISBN-13: 9783642136726
- Artikelnr.: 44615477
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Session 4B. Dimensionality Reduction/Parallelism.- Subclass-Oriented Dimension Reduction with Constraint Transformation and Manifold Regularization.- Distributed Knowledge Discovery with Non Linear Dimensionality Reduction.- DPSP: Distributed Progressive Sequential Pattern Mining on the Cloud.- An Approach for Fast Hierarchical Agglomerative Clustering Using Graphics Processors with CUDA.- Session 5A. Novel Applications.- Ontology-Based Mining of Brainwaves: A Sequence Similarity Technique for Mapping Alternative Features in Event-Related Potentials (ERP) Data.- Combining Support Vector Machines and the t-statistic for Gene Selection in DNA Microarray Data Analysis.- Satrap: Data and Network Heterogeneity Aware P2P Data-Mining.- Player Performance Prediction in Massively Multiplayer Online Role-Playing Games (MMORPGs).- Relevant Gene Selection Using Normalized Cut Clustering with Maximal Compression Similarity Measure.- Session 5B. Feature Selection/Visualization.- A Novel Prototype Reduction Method for the K-Nearest Neighbor Algorithm with K???1.- Generalized Two-Dimensional FLD Method for Feature Extraction: An Application to Face Recognition.- Learning Gradients with Gaussian Processes.- Analyzing the Role of Dimension Arrangement for Data Visualization in Radviz.- Session 6A. Graph Mining.- Subgraph Mining on Directed and Weighted Graphs.- Finding Itemset-Sharing Patterns in a Large Itemset-Associated Graph.- A Framework for SQL-Based Mining of Large Graphs on Relational Databases.- Fast Discovery of Reliable k-terminal Subgraphs.- GTRACE2: Improving Performance Using Labeled Union Graphs.- Session 6B. Clustering II.- Orthogonal Nonnegative Matrix Tri-factorization for Semi-supervised Document Co-clustering.- Rule Synthesizing from Multiple Related Databases.-Fast Orthogonal Nonnegative Matrix Tri-Factorization for Simultaneous Clustering.- Hierarchical Web-Page Clustering via In-Page and Cross-Page Link Structures.- Mining Numbers in Text Using Suffix Arrays and Clustering Based on Dirichlet Process Mixture Models.- Session 7A. Opinion/Sentiment Mining.- Opinion-Based Imprecise Query Answering.- Blog Opinion Retrieval Based on Topic-Opinion Mixture Model.- Feature Subsumption for Sentiment Classification in Multiple Languages.- Decentralisation of ScoreFinder: A Framework for Credibility Management on User-Generated Contents.- Classification and Pattern Discovery of Mood in Weblogs.- Capture of Evidence for Summarization: An Application of Enhanced Subjective Logic.- Session 7B. Stream Mining.- Fast Perceptron Decision Tree Learning from Evolving Data Streams.- Classification and Novel Class Detection in Data Streams with Active Mining.- Bulk Loading Hierarchical Mixture Models for Efficient Stream Classification.- Summarizing Multidimensional Data Streams: A Hierarchy-Graph-Based Approach.- Efficient Trade-Off between Speed Processing and Accuracy in Summarizing Data Streams.- Subsequence Matching of Stream Synopses under the Time Warping Distance.- Session 8A. Similarity and Kernels.- Normalized Kernels as Similarity Indices.- Adaptive Matching Based Kernels for Labelled Graphs.- A New Framework for Dissimilarity and Similarity Learning.- Semantic-Distance Based Clustering for XML Keyword Search.- Session 8B. Graph Analysis.- oddball: Spotting Anomalies in Weighted Graphs.- Robust Outlier Detection Using Commute Time and Eigenspace Embedding.- EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs.- BASSET: Scalable Gateway Finder in Large Graphs.- Session 8C. Classification II.- Ensemble Learning Based on Multi-Task Class Labels.- Supervised Learning with Minimal Effort.- Generating Diverse Ensembles to Counter the Problem of Class Imbalance.- Relationship between Diversity and Correlation in Multi-Classifier Systems.- Compact Margin Machine.
Session 4B. Dimensionality Reduction/Parallelism.- Subclass-Oriented Dimension Reduction with Constraint Transformation and Manifold Regularization.- Distributed Knowledge Discovery with Non Linear Dimensionality Reduction.- DPSP: Distributed Progressive Sequential Pattern Mining on the Cloud.- An Approach for Fast Hierarchical Agglomerative Clustering Using Graphics Processors with CUDA.- Session 5A. Novel Applications.- Ontology-Based Mining of Brainwaves: A Sequence Similarity Technique for Mapping Alternative Features in Event-Related Potentials (ERP) Data.- Combining Support Vector Machines and the t-statistic for Gene Selection in DNA Microarray Data Analysis.- Satrap: Data and Network Heterogeneity Aware P2P Data-Mining.- Player Performance Prediction in Massively Multiplayer Online Role-Playing Games (MMORPGs).- Relevant Gene Selection Using Normalized Cut Clustering with Maximal Compression Similarity Measure.- Session 5B. Feature Selection/Visualization.- A Novel Prototype Reduction Method for the K-Nearest Neighbor Algorithm with K???1.- Generalized Two-Dimensional FLD Method for Feature Extraction: An Application to Face Recognition.- Learning Gradients with Gaussian Processes.- Analyzing the Role of Dimension Arrangement for Data Visualization in Radviz.- Session 6A. Graph Mining.- Subgraph Mining on Directed and Weighted Graphs.- Finding Itemset-Sharing Patterns in a Large Itemset-Associated Graph.- A Framework for SQL-Based Mining of Large Graphs on Relational Databases.- Fast Discovery of Reliable k-terminal Subgraphs.- GTRACE2: Improving Performance Using Labeled Union Graphs.- Session 6B. Clustering II.- Orthogonal Nonnegative Matrix Tri-factorization for Semi-supervised Document Co-clustering.- Rule Synthesizing from Multiple Related Databases.-Fast Orthogonal Nonnegative Matrix Tri-Factorization for Simultaneous Clustering.- Hierarchical Web-Page Clustering via In-Page and Cross-Page Link Structures.- Mining Numbers in Text Using Suffix Arrays and Clustering Based on Dirichlet Process Mixture Models.- Session 7A. Opinion/Sentiment Mining.- Opinion-Based Imprecise Query Answering.- Blog Opinion Retrieval Based on Topic-Opinion Mixture Model.- Feature Subsumption for Sentiment Classification in Multiple Languages.- Decentralisation of ScoreFinder: A Framework for Credibility Management on User-Generated Contents.- Classification and Pattern Discovery of Mood in Weblogs.- Capture of Evidence for Summarization: An Application of Enhanced Subjective Logic.- Session 7B. Stream Mining.- Fast Perceptron Decision Tree Learning from Evolving Data Streams.- Classification and Novel Class Detection in Data Streams with Active Mining.- Bulk Loading Hierarchical Mixture Models for Efficient Stream Classification.- Summarizing Multidimensional Data Streams: A Hierarchy-Graph-Based Approach.- Efficient Trade-Off between Speed Processing and Accuracy in Summarizing Data Streams.- Subsequence Matching of Stream Synopses under the Time Warping Distance.- Session 8A. Similarity and Kernels.- Normalized Kernels as Similarity Indices.- Adaptive Matching Based Kernels for Labelled Graphs.- A New Framework for Dissimilarity and Similarity Learning.- Semantic-Distance Based Clustering for XML Keyword Search.- Session 8B. Graph Analysis.- oddball: Spotting Anomalies in Weighted Graphs.- Robust Outlier Detection Using Commute Time and Eigenspace Embedding.- EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs.- BASSET: Scalable Gateway Finder in Large Graphs.- Session 8C. Classification II.- Ensemble Learning Based on Multi-Task Class Labels.- Supervised Learning with Minimal Effort.- Generating Diverse Ensembles to Counter the Problem of Class Imbalance.- Relationship between Diversity and Correlation in Multi-Classifier Systems.- Compact Margin Machine.