Ivan Stanimirovic
Advances in Optimization and Linear Programming (eBook, PDF)
119,95 €
119,95 €
inkl. MwSt.
Sofort per Download lieferbar
60 °P sammeln
119,95 €
Als Download kaufen
119,95 €
inkl. MwSt.
Sofort per Download lieferbar
60 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
119,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
60 °P sammeln
Ivan Stanimirovic
Advances in Optimization and Linear Programming (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This new volume provides the information needed to understand the simplex method, the revised simplex method, dual simplex method, and more for solving linear programming problems.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 1.99MB
Andere Kunden interessierten sich auch für
- Ivan StanimirovicAdvances in Optimization and Linear Programming (eBook, ePUB)119,95 €
- Ioannis Konstantinos ArgyrosIterative Methods and Their Dynamics with Applications (eBook, PDF)47,95 €
- Jacques BahiDiscrete Dynamical Systems and Chaotic Machines (eBook, PDF)65,95 €
- Santanu Saha RayNovel Methods for Solving Linear and Nonlinear Integral Equations (eBook, PDF)51,95 €
- Sergio BlanesA Concise Introduction to Geometric Numerical Integration (eBook, PDF)51,95 €
- Luigi BrugnanoLine Integral Methods for Conservative Problems (eBook, PDF)63,95 €
- F. V. AtkinsonMultiparameter Eigenvalue Problems (eBook, PDF)63,95 €
-
-
-
This new volume provides the information needed to understand the simplex method, the revised simplex method, dual simplex method, and more for solving linear programming problems.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 204
- Erscheinungstermin: 26. Januar 2022
- Englisch
- ISBN-13: 9781000522037
- Artikelnr.: 63063157
- Verlag: Taylor & Francis
- Seitenzahl: 204
- Erscheinungstermin: 26. Januar 2022
- Englisch
- ISBN-13: 9781000522037
- Artikelnr.: 63063157
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Ivan Stanimirovic, PhD, is currently Associate Professor at the Department of Computer Science, Faculty of Sciences and Mathematics at the University of NiS, Serbia. He was formerly with the Faculty of Management at Megatrend University, Belgrade, as a lecturer. His work spans from multi-objective optimization methods to applications of generalized matrix inverses in areas such as image processing and restoration and computer graphics. His current research interests include computing generalized matrix inverses and their applications, applied multi-objective optimization and decision-making, as well as deep learning neural networks. Dr. Stanimirovic was the chairman of a workshop held at the 13th Serbian Mathematical Congress, Vrnjaèka Banja, Serbia, in 2014.
1. Introduction 1.1 Multiobjective Optimization 1.2 Symbolic
Transformations in Multi-Sector Optimization 1.3. Pareto Optimality Test
1.4 The Method of Weight Coefficients 1.5 Mathematical Model 1.6 Properties
of a Set of Constraints 1.7 Geometrical Method 2. Simplex Method 2.1
Properties of Simplex Methods 2.2 The Algebraic Essence of the Simplex
Method 2.3 The Term Tucker¿s Tables and the Simplex Method for Basic
Permissible Canonical Forms 2.4 Algorithm of Simplex Method 2.5
Determination of the Initial Basic Permissible Solution 2.6 Two-Phase
Simplex Methods 2.7 BigM Method 2.8 Duality in Linear Programming 2.9 Dual
Simplex Method 2.10 Elimination of Equations and Free Variables 2.11
Revised Simplex Method 2.12 Cycling Concept and Anti-Cyclic Rules 2.13
Complexity of Simplex Methods and Minty-Klee Polyhedra 3. Three Direct
Methods in Linear Programming 3.1 Basic Terms 3.2 Minimum Angle Method 3.3
Dependent Constraints and Application of Game Theory 3.4 Algorithms and
Implementation Details 3.5 Direct Heuristic Algorithm with General Inverses
Transformations in Multi-Sector Optimization 1.3. Pareto Optimality Test
1.4 The Method of Weight Coefficients 1.5 Mathematical Model 1.6 Properties
of a Set of Constraints 1.7 Geometrical Method 2. Simplex Method 2.1
Properties of Simplex Methods 2.2 The Algebraic Essence of the Simplex
Method 2.3 The Term Tucker¿s Tables and the Simplex Method for Basic
Permissible Canonical Forms 2.4 Algorithm of Simplex Method 2.5
Determination of the Initial Basic Permissible Solution 2.6 Two-Phase
Simplex Methods 2.7 BigM Method 2.8 Duality in Linear Programming 2.9 Dual
Simplex Method 2.10 Elimination of Equations and Free Variables 2.11
Revised Simplex Method 2.12 Cycling Concept and Anti-Cyclic Rules 2.13
Complexity of Simplex Methods and Minty-Klee Polyhedra 3. Three Direct
Methods in Linear Programming 3.1 Basic Terms 3.2 Minimum Angle Method 3.3
Dependent Constraints and Application of Game Theory 3.4 Algorithms and
Implementation Details 3.5 Direct Heuristic Algorithm with General Inverses
1. Introduction 1.1 Multiobjective Optimization 1.2 Symbolic
Transformations in Multi-Sector Optimization 1.3. Pareto Optimality Test
1.4 The Method of Weight Coefficients 1.5 Mathematical Model 1.6 Properties
of a Set of Constraints 1.7 Geometrical Method 2. Simplex Method 2.1
Properties of Simplex Methods 2.2 The Algebraic Essence of the Simplex
Method 2.3 The Term Tucker¿s Tables and the Simplex Method for Basic
Permissible Canonical Forms 2.4 Algorithm of Simplex Method 2.5
Determination of the Initial Basic Permissible Solution 2.6 Two-Phase
Simplex Methods 2.7 BigM Method 2.8 Duality in Linear Programming 2.9 Dual
Simplex Method 2.10 Elimination of Equations and Free Variables 2.11
Revised Simplex Method 2.12 Cycling Concept and Anti-Cyclic Rules 2.13
Complexity of Simplex Methods and Minty-Klee Polyhedra 3. Three Direct
Methods in Linear Programming 3.1 Basic Terms 3.2 Minimum Angle Method 3.3
Dependent Constraints and Application of Game Theory 3.4 Algorithms and
Implementation Details 3.5 Direct Heuristic Algorithm with General Inverses
Transformations in Multi-Sector Optimization 1.3. Pareto Optimality Test
1.4 The Method of Weight Coefficients 1.5 Mathematical Model 1.6 Properties
of a Set of Constraints 1.7 Geometrical Method 2. Simplex Method 2.1
Properties of Simplex Methods 2.2 The Algebraic Essence of the Simplex
Method 2.3 The Term Tucker¿s Tables and the Simplex Method for Basic
Permissible Canonical Forms 2.4 Algorithm of Simplex Method 2.5
Determination of the Initial Basic Permissible Solution 2.6 Two-Phase
Simplex Methods 2.7 BigM Method 2.8 Duality in Linear Programming 2.9 Dual
Simplex Method 2.10 Elimination of Equations and Free Variables 2.11
Revised Simplex Method 2.12 Cycling Concept and Anti-Cyclic Rules 2.13
Complexity of Simplex Methods and Minty-Klee Polyhedra 3. Three Direct
Methods in Linear Programming 3.1 Basic Terms 3.2 Minimum Angle Method 3.3
Dependent Constraints and Application of Game Theory 3.4 Algorithms and
Implementation Details 3.5 Direct Heuristic Algorithm with General Inverses