161,95 €
161,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
81 °P sammeln
161,95 €
161,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
81 °P sammeln
Als Download kaufen
161,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
81 °P sammeln
Jetzt verschenken
161,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
81 °P sammeln
  • Format: PDF

Advances in Reconfigurable Mechanisms and Robots I provides a selection of key papers presented in The Second ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2012) held on 9 th -11 th July 2012 in Tianjin, China. This ongoing series of conferences will be covered in this ongoing collection of books.
A total of seventy-eight papers are divided into seven parts to cover the topology, kinematics and design of reconfigurable mechanisms with the reconfiguration theory, analysis and synthesis, and present the current research and development in the field of
…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 30.58MB
Produktbeschreibung
Advances in Reconfigurable Mechanisms and Robots I provides a selection of key papers presented in The Second ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2012) held on 9th -11th July 2012 in Tianjin, China. This ongoing series of conferences will be covered in this ongoing collection of books.

A total of seventy-eight papers are divided into seven parts to cover the topology, kinematics and design of reconfigurable mechanisms with the reconfiguration theory, analysis and synthesis, and present the current research and development in the field of reconfigurable mechanisms including reconfigurable parallel mechanisms. In this aspect, the recent study and development of reconfigurable robots are further presented with the analysis and design and with their control and development. The bio-inspired mechanisms and subsequent reconfiguration are explored in the challenging fields of rehabilitation and minimally invasive surgery. Advances in Reconfigurable Mechanisms and Robots I further extends the study to deployable mechanisms and foldable devices and introduces applications of reconfigurable mechanisms and robots.

The rich-content of Advances in Reconfigurable Mechanisms and Robots I brings together new developments in reconfigurable mechanisms and robots and presents a new horizon for future development in the field of reconfigurable mechanisms and robots.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr JS Dai is a leading figure in mechanisms and robotics and fellow of ASME and IMechE. His research interest is in screw theory and algebra, theoretical kinematics, reconfigurable mechanisms and robots, grasping and manipulation as well as their application to industrial productions and medical robotics including rehabilitation robotics. In the past twenty-five years, he published over 400 peer-reviewed papers, 15 book chapters and several books including the recent monograph entitled "Screw Algebra and Geometrical Approaches for Robotics" by Springer with its Chinese translation of a 14-chapter version with the same title by Higher Education Press of China and a 9-chapter version entitled "Screw Algebra and Lie Groups and Lie Algebra" in the series of the foundation of modern mathematics by the same publisher. He is the recipient of a number of paper, service and excellence awards, has successfully graduated 18 PhDs and is currently associate editor of IEEE Transactions on Robotics, ASME Transactions: Journal of Mechanisms and Robotics, and Robotica. Dr Dai is the conference chair of the First and Second ASME International Conference on Reconfigurable Mechanisms and Robots and the conference chair of the 36 th ASME Mechanisms and Robotics International Conference. He is the director of the centre for advanced mechanisms and robotics at Tianjin University, "Yangtze Chair Professor" awarded by the Ministry of Education of China and Chair in Mechanisms and Robotics at King's College London.   Dr Matteo Zoppi is a member of ASME and IEEE and researcher in robotics at the Department of Mechanics of the University of Genoa, PMAR Robotics research group with M.Sc. in mechanical engineering and Ph.D. in robotics. He is active in the areas of inventive design of robotic systems and in development of methods for the synthesis andanalysis of mechanisms for robotics. He is involved in European projects in the areas of ICT, NMP, Transport and Security, with subjects ranging from smart manufacturing to intelligent vehicles. His special interest is in the design and development of metamorphic robotic grippers and hands for the manipulation of textiles and soft materials with expertise in the development of cooperative, flexible fixturing systems for manufacturing and assembly in automotive and aeronautical applications.   Dr X. Kong is an expert in mechanisms and robotics from Heriot-Watt University, United Kingdom. His research focuses on mechanisms, robotics, mechatronics and their industrial, biomedical and renewable energy applications at the macro-, micro- and nano-scales. He has published a monograph entitled "Type Synthesis of Parallel Mechanisms" by Springer with its Russian translation to be published by the Russian publisher FIZMATLIT - Nauka Publishers, two United States patents, and a number of international journal and conference papers. He has proposed a general approach for the creative design of parallel manipulators based on screw theory and an innovative representation of motion patterns. Especially, he invented the Tripteron, a ground-breaking decoupled translational parallel robot. Recently, he has made advances in the type synthesis of disassembly-free reconfigurable parallel manipulators and spatial compliant parallel manipulators for micro- and nano-manipulation. He has also made original contributions in the algebraic determination of the unique current pose of several classes of parallel manipulators, which is a non-linear problem.. He is currently an associate editor for the international journal of Mechanism and Machine Theory and an elected committee member of ASME Mechanisms and Robotics Committee.