Advances in Scalable and Intelligent Geospatial Analytics (eBook, ePUB)
Challenges and Applications
Redaktion: Durbha, Surya S; Kurte, Kuldeep; Bharambe, Ujwala; Bhangale, Ujwala; S Chaudhari, Sangita; Yang, Lexie; Sanyal, Jibonananda
Alle Infos zum eBook verschenken
Advances in Scalable and Intelligent Geospatial Analytics (eBook, ePUB)
Challenges and Applications
Redaktion: Durbha, Surya S; Kurte, Kuldeep; Bharambe, Ujwala; Bhangale, Ujwala; S Chaudhari, Sangita; Yang, Lexie; Sanyal, Jibonananda
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Advances in high-performance computing, computer vision, and big data analytics enable the efficient processing of big-geospatial data. Geospatial communities have adopted these techniques in a variety of applications. This book is a comprehensive overview of the state-of-the-art, and future developments in this domain.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 33.85MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 421
- Erscheinungstermin: 12. Mai 2023
- Englisch
- ISBN-13: 9781000877540
- Artikelnr.: 67663149
- Verlag: Taylor & Francis
- Seitenzahl: 421
- Erscheinungstermin: 12. Mai 2023
- Englisch
- ISBN-13: 9781000877540
- Artikelnr.: 67663149
Developments, Present Scenario and Research Challenges. Section II: Geo-Ai.
2. Perspectives on Geospatial Artificial Intelligence Platforms for
Multimodal Spatiotemporal Datasets. 3. Temporal Dynamics of Place and
Mobility. 4. Geospatial Knowledge Graph Construction Workflow for
Semantics-Enabled Remote Sensing Scene Understanding. 5. Geosemantic
Standards-Driven Intelligent Information Retrieval Framework for 3D LiDAR
Point Clouds. 6. Geospatial Analytics Using Natural Language Processing.
Section III: Scalable Geospatial Analytics. 7. A Scalable Automated
Satellite Data Downloading and Processing Pipeline Developed on AWS Cloud
for Agricultural Applications. 8. Providing Geospatial Intelligence through
a Scalable Imagery Pipeline. 9. Distributed Deep Learning and Its
Application in Geo-spatial Analytics. 10. High-Performance Computing for
Processing Big Geospatial Disaster Data. Section IV: Geovisualization:
Innovative Approaches for Geovisualization and Geovisual Analytics for Big
Geospatial Data. 11. Dashboard for Earth Observation. 12. Visual
Exploration of LiDAR Point Clouds. Section V: Other Advances in Geospatial
Domain. 13. Toward a Smart Metaverse City: Immersive Realism and 3D
Visualization of Digital Twin Cities. 14. Current UAS Capabilities for
Geospatial Spectral Solutions. 15. Flood Mapping and Damage Assessment
Using Sentinel - 1 & 2 in Google Earth Engine of Port Berge & Mampikony
Districts, Sophia Region, Madagascar. Section VI: Case Studies from the
Geospatial Domain. 16. Fuzzy-Based Meta-Heuristic and Bi-Variate
Geo-Statistical Modelling for Spatial Prediction of Landslides. 17.
Understanding the Dynamics of the City through Crowdsourced Datasets: A
Case Study of Indore City. 18. A Hybrid Model for the Prediction of Land
Use/Land Cover Pattern in Kurunegala City, Sri Lanka. 19. Spatio-Temporal
Dynamics of Tropical Deciduous Forests under Climate Change Scenarios in
India. 20. A Survey of Machine Learning Techniques in Forestry Applications
Using SAR Data.
Developments, Present Scenario and Research Challenges. Section II: Geo-Ai.
2. Perspectives on Geospatial Artificial Intelligence Platforms for
Multimodal Spatiotemporal Datasets. 3. Temporal Dynamics of Place and
Mobility. 4. Geospatial Knowledge Graph Construction Workflow for
Semantics-Enabled Remote Sensing Scene Understanding. 5. Geosemantic
Standards-Driven Intelligent Information Retrieval Framework for 3D LiDAR
Point Clouds. 6. Geospatial Analytics Using Natural Language Processing.
Section III: Scalable Geospatial Analytics. 7. A Scalable Automated
Satellite Data Downloading and Processing Pipeline Developed on AWS Cloud
for Agricultural Applications. 8. Providing Geospatial Intelligence through
a Scalable Imagery Pipeline. 9. Distributed Deep Learning and Its
Application in Geo-spatial Analytics. 10. High-Performance Computing for
Processing Big Geospatial Disaster Data. Section IV: Geovisualization:
Innovative Approaches for Geovisualization and Geovisual Analytics for Big
Geospatial Data. 11. Dashboard for Earth Observation. 12. Visual
Exploration of LiDAR Point Clouds. Section V: Other Advances in Geospatial
Domain. 13. Toward a Smart Metaverse City: Immersive Realism and 3D
Visualization of Digital Twin Cities. 14. Current UAS Capabilities for
Geospatial Spectral Solutions. 15. Flood Mapping and Damage Assessment
Using Sentinel - 1 & 2 in Google Earth Engine of Port Berge & Mampikony
Districts, Sophia Region, Madagascar. Section VI: Case Studies from the
Geospatial Domain. 16. Fuzzy-Based Meta-Heuristic and Bi-Variate
Geo-Statistical Modelling for Spatial Prediction of Landslides. 17.
Understanding the Dynamics of the City through Crowdsourced Datasets: A
Case Study of Indore City. 18. A Hybrid Model for the Prediction of Land
Use/Land Cover Pattern in Kurunegala City, Sri Lanka. 19. Spatio-Temporal
Dynamics of Tropical Deciduous Forests under Climate Change Scenarios in
India. 20. A Survey of Machine Learning Techniques in Forestry Applications
Using SAR Data.