Advancing Natural Language Processing in Educational Assessment (eBook, ePUB)
Redaktion: Yaneva, Victoria; Davier, Matthias von
0,99 €
0,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
0,99 €
Als Download kaufen
0,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
0,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Advancing Natural Language Processing in Educational Assessment (eBook, ePUB)
Redaktion: Yaneva, Victoria; Davier, Matthias von
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Advancing Natural Language Processing in Educational Assessment examines the use of natural language technology in educational testing, measurement, and assessment.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 3.52MB
Andere Kunden interessierten sich auch für
- Advancing Natural Language Processing in Educational Assessment (eBook, PDF)0,99 €
- Marmar MukhopadhyayAcademic Leadership (eBook, ePUB)31,95 €
- Cultural Awareness in Teaching Art and Design (eBook, ePUB)21,95 €
- Unlocking the Power of Teacher Feedback (eBook, ePUB)52,95 €
- Emma JonesEmotions in the Law School (eBook, ePUB)42,95 €
- Vanita NaidooThe Impacts of Green Space on Student Experience at an Urban Community College (eBook, ePUB)20,95 €
- C. W. ValentineIntelligence Tests for Children (eBook, ePUB)44,95 €
-
-
-
Advancing Natural Language Processing in Educational Assessment examines the use of natural language technology in educational testing, measurement, and assessment.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 260
- Erscheinungstermin: 5. Juni 2023
- Englisch
- ISBN-13: 9781000904192
- Artikelnr.: 68124807
- Verlag: Taylor & Francis
- Seitenzahl: 260
- Erscheinungstermin: 5. Juni 2023
- Englisch
- ISBN-13: 9781000904192
- Artikelnr.: 68124807
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Victoria Yaneva is Senior NLP Scientist at the National Board of Medical Examiners, USA. Matthias von Davier is Monan Professor of Education in the Lynch School of Education and Executive Director of TIMSS & PIRLS International Study Center at Boston College, USA.
Preface
by Victoria Yaneva and Matthias von Davier
Section I: Automated Scoring
Chapter 1: The Role of Robust Software in Automated Scoring
by Nitin Madnani, Aoife Cahill, and Anastassia Loukina
Chapter 2: Psychometric Considerations when Using Deep Learning for Automated Scoring
by Susan Lottridge, Chris Ormerod, and Amir Jafari
Chapter 3: Speech Analysis in Assessment
by Jared C. Bernstein and Jian Cheng
Chapter 4: Assessment of Clinical Skills: A Case Study in Constructing an NLP-Based Scoring System for Patient Notes
by Polina Harik, Janet Mee, Christopher Runyon, and Brian E. Clauser
Section II: Item Development
Chapter 5: Automatic Generation of Multiple-Choice Test Items from Paragraphs Using Deep Neural Networks
by Ruslan Mitkov, Le An Ha, Halyna Maslak, Tharindu Ranasinghe, and Vilelmini Sosoni
Chapter 6: Training Optimus Prime, M.D.: A Case Study of Automated Item Generation using Artificial Intelligence - From Fine-Tuned GPT2 to GPT3 and Beyond
by Matthias von Davier
Chapter 7: Computational Psychometrics for Digital-first Assessments: A Blend of ML and Psychometrics for Item Generation and Scoring
by Geoff LaFlair, Kevin Yancey, Burr Settles, Alina A von Davier
Section III: Validity and Fairness
Chapter 8: Validity, Fairness, and Technology-based Assessment
by Suzanne Lane
Chapter 9: Evaluating Fairness of Automated Scoring in Educational Measurement
by Matthew S. Johnson and Daniel F. McCaffrey
Section IV: Emerging Technologies
Chapter 10: Extracting Linguistic Signal from Item Text and Its Application to Modeling Item Characteristics
by Victoria Yaneva, Peter Baldwin, Le An Ha, and Christopher Runyon
Chapter 11: Stealth Literacy Assessment: Leveraging Games and NLP in iSTART
by Ying Fang, Laura K. Allen, Rod D. Roscoe, and Danielle S. McNamara
Chapter 12: Measuring Scientific Understanding Across International Samples: The Promise of Machine Translation and NLP-based Machine Learning Technologies
by Minsu Ha and Ross H. Nehm
Chapter 13: Making Sense of College Students' Writing Achievement and Retention with Automated Writing Evaluation
by Jill Burstein, Daniel McCaffrey, Steven Holtzman & Beata Beigman Klebanov
Contributor Biographies
by Victoria Yaneva and Matthias von Davier
Section I: Automated Scoring
Chapter 1: The Role of Robust Software in Automated Scoring
by Nitin Madnani, Aoife Cahill, and Anastassia Loukina
Chapter 2: Psychometric Considerations when Using Deep Learning for Automated Scoring
by Susan Lottridge, Chris Ormerod, and Amir Jafari
Chapter 3: Speech Analysis in Assessment
by Jared C. Bernstein and Jian Cheng
Chapter 4: Assessment of Clinical Skills: A Case Study in Constructing an NLP-Based Scoring System for Patient Notes
by Polina Harik, Janet Mee, Christopher Runyon, and Brian E. Clauser
Section II: Item Development
Chapter 5: Automatic Generation of Multiple-Choice Test Items from Paragraphs Using Deep Neural Networks
by Ruslan Mitkov, Le An Ha, Halyna Maslak, Tharindu Ranasinghe, and Vilelmini Sosoni
Chapter 6: Training Optimus Prime, M.D.: A Case Study of Automated Item Generation using Artificial Intelligence - From Fine-Tuned GPT2 to GPT3 and Beyond
by Matthias von Davier
Chapter 7: Computational Psychometrics for Digital-first Assessments: A Blend of ML and Psychometrics for Item Generation and Scoring
by Geoff LaFlair, Kevin Yancey, Burr Settles, Alina A von Davier
Section III: Validity and Fairness
Chapter 8: Validity, Fairness, and Technology-based Assessment
by Suzanne Lane
Chapter 9: Evaluating Fairness of Automated Scoring in Educational Measurement
by Matthew S. Johnson and Daniel F. McCaffrey
Section IV: Emerging Technologies
Chapter 10: Extracting Linguistic Signal from Item Text and Its Application to Modeling Item Characteristics
by Victoria Yaneva, Peter Baldwin, Le An Ha, and Christopher Runyon
Chapter 11: Stealth Literacy Assessment: Leveraging Games and NLP in iSTART
by Ying Fang, Laura K. Allen, Rod D. Roscoe, and Danielle S. McNamara
Chapter 12: Measuring Scientific Understanding Across International Samples: The Promise of Machine Translation and NLP-based Machine Learning Technologies
by Minsu Ha and Ross H. Nehm
Chapter 13: Making Sense of College Students' Writing Achievement and Retention with Automated Writing Evaluation
by Jill Burstein, Daniel McCaffrey, Steven Holtzman & Beata Beigman Klebanov
Contributor Biographies
Preface
by Victoria Yaneva and Matthias von Davier
Section I: Automated Scoring
Chapter 1: The Role of Robust Software in Automated Scoring
by Nitin Madnani, Aoife Cahill, and Anastassia Loukina
Chapter 2: Psychometric Considerations when Using Deep Learning for Automated Scoring
by Susan Lottridge, Chris Ormerod, and Amir Jafari
Chapter 3: Speech Analysis in Assessment
by Jared C. Bernstein and Jian Cheng
Chapter 4: Assessment of Clinical Skills: A Case Study in Constructing an NLP-Based Scoring System for Patient Notes
by Polina Harik, Janet Mee, Christopher Runyon, and Brian E. Clauser
Section II: Item Development
Chapter 5: Automatic Generation of Multiple-Choice Test Items from Paragraphs Using Deep Neural Networks
by Ruslan Mitkov, Le An Ha, Halyna Maslak, Tharindu Ranasinghe, and Vilelmini Sosoni
Chapter 6: Training Optimus Prime, M.D.: A Case Study of Automated Item Generation using Artificial Intelligence - From Fine-Tuned GPT2 to GPT3 and Beyond
by Matthias von Davier
Chapter 7: Computational Psychometrics for Digital-first Assessments: A Blend of ML and Psychometrics for Item Generation and Scoring
by Geoff LaFlair, Kevin Yancey, Burr Settles, Alina A von Davier
Section III: Validity and Fairness
Chapter 8: Validity, Fairness, and Technology-based Assessment
by Suzanne Lane
Chapter 9: Evaluating Fairness of Automated Scoring in Educational Measurement
by Matthew S. Johnson and Daniel F. McCaffrey
Section IV: Emerging Technologies
Chapter 10: Extracting Linguistic Signal from Item Text and Its Application to Modeling Item Characteristics
by Victoria Yaneva, Peter Baldwin, Le An Ha, and Christopher Runyon
Chapter 11: Stealth Literacy Assessment: Leveraging Games and NLP in iSTART
by Ying Fang, Laura K. Allen, Rod D. Roscoe, and Danielle S. McNamara
Chapter 12: Measuring Scientific Understanding Across International Samples: The Promise of Machine Translation and NLP-based Machine Learning Technologies
by Minsu Ha and Ross H. Nehm
Chapter 13: Making Sense of College Students' Writing Achievement and Retention with Automated Writing Evaluation
by Jill Burstein, Daniel McCaffrey, Steven Holtzman & Beata Beigman Klebanov
Contributor Biographies
by Victoria Yaneva and Matthias von Davier
Section I: Automated Scoring
Chapter 1: The Role of Robust Software in Automated Scoring
by Nitin Madnani, Aoife Cahill, and Anastassia Loukina
Chapter 2: Psychometric Considerations when Using Deep Learning for Automated Scoring
by Susan Lottridge, Chris Ormerod, and Amir Jafari
Chapter 3: Speech Analysis in Assessment
by Jared C. Bernstein and Jian Cheng
Chapter 4: Assessment of Clinical Skills: A Case Study in Constructing an NLP-Based Scoring System for Patient Notes
by Polina Harik, Janet Mee, Christopher Runyon, and Brian E. Clauser
Section II: Item Development
Chapter 5: Automatic Generation of Multiple-Choice Test Items from Paragraphs Using Deep Neural Networks
by Ruslan Mitkov, Le An Ha, Halyna Maslak, Tharindu Ranasinghe, and Vilelmini Sosoni
Chapter 6: Training Optimus Prime, M.D.: A Case Study of Automated Item Generation using Artificial Intelligence - From Fine-Tuned GPT2 to GPT3 and Beyond
by Matthias von Davier
Chapter 7: Computational Psychometrics for Digital-first Assessments: A Blend of ML and Psychometrics for Item Generation and Scoring
by Geoff LaFlair, Kevin Yancey, Burr Settles, Alina A von Davier
Section III: Validity and Fairness
Chapter 8: Validity, Fairness, and Technology-based Assessment
by Suzanne Lane
Chapter 9: Evaluating Fairness of Automated Scoring in Educational Measurement
by Matthew S. Johnson and Daniel F. McCaffrey
Section IV: Emerging Technologies
Chapter 10: Extracting Linguistic Signal from Item Text and Its Application to Modeling Item Characteristics
by Victoria Yaneva, Peter Baldwin, Le An Ha, and Christopher Runyon
Chapter 11: Stealth Literacy Assessment: Leveraging Games and NLP in iSTART
by Ying Fang, Laura K. Allen, Rod D. Roscoe, and Danielle S. McNamara
Chapter 12: Measuring Scientific Understanding Across International Samples: The Promise of Machine Translation and NLP-based Machine Learning Technologies
by Minsu Ha and Ross H. Nehm
Chapter 13: Making Sense of College Students' Writing Achievement and Retention with Automated Writing Evaluation
by Jill Burstein, Daniel McCaffrey, Steven Holtzman & Beata Beigman Klebanov
Contributor Biographies