Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book explores the ways in which statistical models, methods, and research designs can be used to open new possibilities for APC analysis. Within a single, consistent HAPC-GLMM statistical modeling framework, the authors synthesize APC models and methods for three research designs: age-by-time period tables of population rates or proportions, repeated cross-section sample surveys, and accelerated longitudinal panel studies. They show how the empirical application of the models to various problems leads to many fascinating findings on how outcome variables develop along the age, period, and cohort dimensions.…mehr
This book explores the ways in which statistical models, methods, and research designs can be used to open new possibilities for APC analysis. Within a single, consistent HAPC-GLMM statistical modeling framework, the authors synthesize APC models and methods for three research designs: age-by-time period tables of population rates or proportions, repeated cross-section sample surveys, and accelerated longitudinal panel studies. They show how the empirical application of the models to various problems leads to many fascinating findings on how outcome variables develop along the age, period, and cohort dimensions.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Yang Yang is an associate professor in the Department of Sociology and Lineberger Comprehensive Cancer Center and a faculty fellow in the Carolina Population Center at the University of North Carolina-Chapel Hill. Dr. Yang's research encompasses the areas of demography, medical sociology, cancer, and quantitative methodology. Her work has been featured in numerous media outlets, including the American Sociological Review, CNN, Associated Press, Reuters, Washington Post, and Chicago Tribune. She received a Ph.D. in sociology from Duke University.
Kenneth C. Land is a John Franklin Crowell professor of sociology and faculty director of the Center for Population Health and Aging at Duke University. Dr. Land is a fellow of the American Statistical Association, the Sociological Research Association, the American Association for the Advancement of Science, the International Society for Quality-of-Life Studies, and the American Society of Criminology. His research focuses on contemporary social trends and quality-of-life measurement, social problems, demography, criminology, organizations, and mathematical and statistical models and methods for the study of social and demographic processes. He received a Ph.D. in sociology and mathematics from the University of Texas at Austin.
Inhaltsangabe
Introduction. Why Cohort Analysis? APC Analysis of Data from Three Common Research Designs. Formalities of the Age-Period-Cohort Analysis Conundrum and a Generalized Linear Mixed Models (GLMM) Framework. APC Accounting/Multiple Classification Model, Part I: Model Identification and Estimation Using the Intrinsic Estimator. APC Accounting/Multiple Classification Model, Part II: Empirical Applications. Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part I: The Basics. Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part II: Advanced Analyses. Mixed Effects Models: Hierarchical APC-Growth Curve Analysis of Prospective Cohort Data. Directions for Future Research and Conclusion. Index.
Introduction. Why Cohort Analysis? APC Analysis of Data from Three Common Research Designs. Formalities of the Age-Period-Cohort Analysis Conundrum and a Generalized Linear Mixed Models (GLMM) Framework. APC Accounting/Multiple Classification Model, Part I: Model Identification and Estimation Using the Intrinsic Estimator. APC Accounting/Multiple Classification Model, Part II: Empirical Applications. Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part I: The Basics. Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part II: Advanced Analyses. Mixed Effects Models: Hierarchical APC-Growth Curve Analysis of Prospective Cohort Data. Directions for Future Research and Conclusion. Index.
Introduction. Why Cohort Analysis? APC Analysis of Data from Three Common Research Designs. Formalities of the Age-Period-Cohort Analysis Conundrum and a Generalized Linear Mixed Models (GLMM) Framework. APC Accounting/Multiple Classification Model, Part I: Model Identification and Estimation Using the Intrinsic Estimator. APC Accounting/Multiple Classification Model, Part II: Empirical Applications. Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part I: The Basics. Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part II: Advanced Analyses. Mixed Effects Models: Hierarchical APC-Growth Curve Analysis of Prospective Cohort Data. Directions for Future Research and Conclusion. Index.
Introduction. Why Cohort Analysis? APC Analysis of Data from Three Common Research Designs. Formalities of the Age-Period-Cohort Analysis Conundrum and a Generalized Linear Mixed Models (GLMM) Framework. APC Accounting/Multiple Classification Model, Part I: Model Identification and Estimation Using the Intrinsic Estimator. APC Accounting/Multiple Classification Model, Part II: Empirical Applications. Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part I: The Basics. Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part II: Advanced Analyses. Mixed Effects Models: Hierarchical APC-Growth Curve Analysis of Prospective Cohort Data. Directions for Future Research and Conclusion. Index.
Rezensionen
" ... presents all the important background and new developments in one place, with examples and software for easy applications. I would recommendthis book to anyone working in various research disciplines that rely on APC analysis." -Journal of the American Statistical Association
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826