Alle Infos zum eBook verschenken
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Edited by the academic who first discovered this important phenomenon, Aggregation-Induced Emission is the first book to cover the applications of Aggregation-Induced Emission. This groundbreaking text explores the high-tech applications of AIE materials in optoelectronic devices, chemical sensors, and biological probes. A valuable resource for scientists, physicists, and biological chemists, topics covered include: AIE materials for LEDs and lasers; mechanochromic AIE materials; new chemo- and biosensors based on AIE fluorophores; AIE dye-encapsulated nanoparticles for optical bioimaging; and…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 21.91MB
- Ben Zhong TangAggregation-Induced Emission (eBook, PDF)161,99 €
- Ben Zhong TangAggregation-Induced Emission (eBook, ePUB)122,99 €
- Handbook of Aggregation-Induced Emission, Volume 2 (eBook, PDF)201,99 €
- Handbook of Aggregation-Induced Emission, Volume 3 (eBook, PDF)201,99 €
- Handbook of Aggregation-Induced Emission, Volume 1 (eBook, PDF)201,99 €
- Gertz I. LikhtenshteinSolar Energy Conversion (eBook, PDF)133,99 €
- Ben Zhong TangAggregation-Induced Emission (eBook, ePUB)161,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Wiley-Blackwell
- Seitenzahl: 296
- Erscheinungstermin: 5. September 2013
- Englisch
- ISBN-13: 9781118701584
- Artikelnr.: 39482446
- Verlag: Wiley-Blackwell
- Seitenzahl: 296
- Erscheinungstermin: 5. September 2013
- Englisch
- ISBN-13: 9781118701584
- Artikelnr.: 39482446
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Preface xiii
1 AIE or AIEE Materials for Electroluminescence Applications 1
Chiao-Wen Lin and Chin-Ti Chen
1.1 Introduction 1
1.2 EL Background, EL Efficiency, Color Chromaticity, and Fabrication
Issues of OLEDs 2
1.3 AIE or AIEE Silole Derivatives for OLEDs 7
1.4 AIE or AIEE Maleimide and Pyrrole Derivatives for OLEDs 10
1.5 AIE or AIEE Cyano-Substituted Stilbenoid and Distyrylbenzene
Derivatives for OLEDs 14
1.6 AIE or AIEE Triarylamine Derivatives for OLEDs 17
1.7 AIE or AIEE Triphenylethene and Tetraphenylethene Derivatives for OLEDs
17
1.8 White OLEDs Containing AIE or AIEE Materials 31
1.9 Perspectives 36
References 37
2 Crystallization-Induced Phosphorescence for Purely Organic Phosphors at
Room Temperature and Liquid Crystals with Aggregation-Induced Emission
Characteristics 42
Wang Zhang Yuan, Yongming Zhang, and Ben Zhong Tang
2.1 Crystallization-Induced Phosphorescence for Purely Organic Phosphors at
Room Temperature 42
2.1.1 Introduction 42
2.1.2 Molecular luminogens with crystallization-induced phosphorescence at
room temperature 43
2.2 Liquid crystals with aggregation-induced emission characteristics 51
2.2.1 Luminescent liquid crystals 51
2.2.2 Aggregation-induced emission strategy towards high-efficiency
luminescent liquid crystals 52
2.3 Conclusions and Perspectives 56
References 57
3 Mechanochromic Aggregation-Induced Emission Materials 60
Zhenguo Chi and Jiarui Xu
3.1 Introduction 60
3.2 Mechanochromic Non-AIE Compounds 61
3.3 Mechanochromic AIE Compounds 63
3.4 Conclusion 81
References 82
4 Chiral Recognition and Enantiomeric Excess Determination Based on
Aggregation-Induced Emission 86
Yan-Song Zheng
4.1 Introduction to Chiral Recognition 86
4.2 Chiral Recognition and Enantiomeric Excess Determination of Chiral
Amines 87
4.3 Chiral Recognition and Enantiomeric Excess Determination of Chiral
Acids 90
4.3.1 Enantiomeric excess determination of chiral acids using chiral AIE
amines 90
4.3.2 Enantiomeric excess determination of chiral acids using a chiral
receptor in the presence of an AIE compound 97
4.4 Mechanism of chiral recognition based on AIE 100
4.4.1 Mechanism of chiral recognition by a chiral AIE monoamine 101
4.4.2 Mechanism of chiral recognition by a chiral AIE diamine 101
4.5 Prospects for chiral recognition based on AIE 103
References 104
5 AIE Materials Towards Efficient Circularly Polarized Luminescence,
Organic Lasing, and Superamplified Detection of Explosives 106
Jianzhao Liu, Jacky W.Y. Lam, and Ben Zhong Tang
5.1 Introduction 106
5.2 AIE Materials with Efficient Circularly Polarized Luminescence and
Large Dissymmetry Factor 106
5.2.1 Aggregation-induced circular dichroism 107
5.2.2 AIE, fluorescence decay dynamics and theoretical understanding 109
5.2.3 Aggregation-induced circularly polarized luminescence 112
5.2.4 Supramolecular assembly and structural modeling 114
5.3 AIE Materials for Organic Lasing 117
5.3.1 Fabrication of nano-structures 117
5.3.2 Lasing performances 118
5.4 AIE Materials for Superamplified Detection of Explosives 120
5.4.1 Hyperbranched polymer-based sensor 121
5.4.2 Mesoporous material-based sensor 126
5.5 Conclusion 126
References 127
6 Aggregation-Induced Emission and Applications of Aryl-Substituted Pyrrole
Derivatives 129
Bin Tong and Yuping Dong
6.1 Introduction 129
6.2 Luminescence Properties of Triphenylpyrrole Derivatives in the
Aggregated State 130
6.3 Applications 134
6.4 Aggregation-Induced Emission of Pentaphenylpyrrole 145
6.5 AIEE Mechanism of Pentaphenylpyrrole 148
6.6 Conclusion 150
References 150
7 Biogenic Amine Sensing with Aggregation-Induced Emission-Active
Tetraphenylethenes 154
Takanobu Sanji and Masato Tanaka
7.1 Introduction 154
7.1.1 Biogenic amines 154
7.1.2 Sensing methods for biogenic amines 154
7.2 Fluorimetric Sensing of Biogenic Amines with AIE-Active TPEs 155
7.2.1 Design for fluorimetric sensing of biogenic amines 155
7.2.2 Sensing studies and statistical analysis 155
7.2.3 Determination of histamine concentration 159
7.2.4 Fluorimetric sensing of melamine with AIE-active TPEs 160
7.3 Summary and Outlook 160
References 161
8 New Chemo-/Biosensors with Silole and Tetraphenylethene Molecules Based
on the Aggregation and Deaggregation Mechanism 162
Ming Wang, Guanxin Zhang, and Deqing Zhang
8.1 Introduction 162
8.2 Cation and Anion Sensors 163
8.3 Fluorimetric Biosensors for Biomacromolecules 166
8.4 Fluorimetric Assays for Enzymes 170
8.5 Fluorimetric Detection of Physiologically Important Small Molecules 177
8.6 Miscellaneous Sensors 180
8.7 Conclusion and Outlook 182
References 182
9 Carbohydrate-Functionalized AIE-Active Molecules as Luminescent Probes
for Biosensing 186
Qi Chen and Bao-Hang Han
9.1 Introduction 186
9.2 Carbohydrate-Bearing AIE-Active Molecules 187
9.2.1 Carbohydrate-bearing siloles 188
9.2.2 Carbohydrate-bearing phosphole oxides 189
9.2.3 Carbohydrate-bearing tetraphenylethenes 190
9.3 Luminescent Probes for Lectins 192
9.4 Luminescent Probes for Enzymes 196
9.5 Luminescent Probes for Viruses and Toxins 200
9.6 Conclusion 202
Acknowledgments 202
References 202
10 Aggregation-Induced Emission Dyes for In Vivo Functional Bioimaging 205
Jun Qian, Dan Wang, and Sailing He
10.1 Introduction 205
10.2 AIE Dyes for Macro In Vivo Functional Bioimaging 206
10.2.1 AIE dye-encapsulated phospholipid-PEG nanomicelles 206
10.2.2 AIE dye-encapsulated nanomicelles for SLN mapping of mice 206
10.2.3 AIE dye-encapsulated nanomicelles for tumor targeting of mice 212
10.2.4 Other types of AIE-nanoparticles for in vivo functional bioimaging
217
10.3 Multiphoton-Induced Fluorescence from AIE Dyes and Applications in
In Vivo Functional Microscopic Imaging 219
10.3.1 Two- and three-photon-induced fluorescence of AIE dyes 219
10.3.2 AIE dye-encapsulated nanomicelles for two-photon blood vessel
imaging
of live mice 223
10.3.3 AIE dye-encapsulated nanomicelles for two-photon brain imaging
of live mice 226
10.4 Summary and Perspectives 228
Acknowledgments 230
References 230
11 Specific Light-Up Bioprobes with Aggregation-Induced Emission
Characteristics for Protein Sensing 234
Jing Liang, Haibin Shi, Ben Zhong Tang, and Bin Liu
11.1 Introduction 234
11.2 In Vitro Detection of Integrin avb3 Using a TPS-Based Probe 235
11.2.1 Detection mechanisms 236
11.2.2 Synthesis and characterization of the TPS-2cRGD probe 236
11.2.3 Detection of integrin in solutions 238
11.2.4 In vitro sensing of integrin in cancer cells 239
11.3 Real-Time Monitoring of Cell Apoptosis and Drug Screening with a
TPE-Based Probe 240
11.3.1 Design principles 240
11.3.2 Synthesis and characterization of Ac-DEVEK-TPE probe 241
11.3.3 Detection of caspase and kinetic study of caspase activities in
solutions 242
11.3.4 Imaging of cell apoptosis and screening of apoptosis-inducing agents
243
11.4 In Vivo Monitoring of Cell Apoptosis and Drug Screening with
PyTPE-Based Probe 246
11.4.1 Working principles 246
11.4.2 Synthesis and characterization of DEVD-PyTPE probe 247
11.4.3 Monitoring of caspase activities in solutions 248
11.4.4 In vitro and in vivo imaging of cell apoptosis 248
11.5 Conclusion 250
Acknowledgments 250
References 251
12 Applications of Aggregation-Induced Emission Materials in Biotechnology
254
Yuning Hong, Jacky W.Y. Lam, and Ben Zhong Tang
12.1 Introduction 254
12.2 AIE Materials for Nucleic Acid Studies 255
12.2.1 Quantitation and gel visualization of DNA and RNA 255
12.2.2 Specific probing of G-quadruplex DNA formation 257
12.3 AIE Materials for Protein Studies 258
12.3.1 Quantitation and PAGE staining of proteins 258
12.3.2 Fluorescence immunoassay by AIE materials 261
12.3.3 Monitoring of the unfolding/refolding process of human serum albumin
261
12.3.4 Monitoring and inhibition of amyloid fibrillation of insulin 262
12.4 AIE Materials for Live Cell Imaging 264
12.4.1 AIE bioprobes for long-term cell tracking 264
12.4.2 AIE nanoparticles for cell staining 264
12.5 Conclusion 266
References 267
Index 271
Preface xiii
1 AIE or AIEE Materials for Electroluminescence Applications 1
Chiao-Wen Lin and Chin-Ti Chen
1.1 Introduction 1
1.2 EL Background, EL Efficiency, Color Chromaticity, and Fabrication
Issues of OLEDs 2
1.3 AIE or AIEE Silole Derivatives for OLEDs 7
1.4 AIE or AIEE Maleimide and Pyrrole Derivatives for OLEDs 10
1.5 AIE or AIEE Cyano-Substituted Stilbenoid and Distyrylbenzene
Derivatives for OLEDs 14
1.6 AIE or AIEE Triarylamine Derivatives for OLEDs 17
1.7 AIE or AIEE Triphenylethene and Tetraphenylethene Derivatives for OLEDs
17
1.8 White OLEDs Containing AIE or AIEE Materials 31
1.9 Perspectives 36
References 37
2 Crystallization-Induced Phosphorescence for Purely Organic Phosphors at
Room Temperature and Liquid Crystals with Aggregation-Induced Emission
Characteristics 42
Wang Zhang Yuan, Yongming Zhang, and Ben Zhong Tang
2.1 Crystallization-Induced Phosphorescence for Purely Organic Phosphors at
Room Temperature 42
2.1.1 Introduction 42
2.1.2 Molecular luminogens with crystallization-induced phosphorescence at
room temperature 43
2.2 Liquid crystals with aggregation-induced emission characteristics 51
2.2.1 Luminescent liquid crystals 51
2.2.2 Aggregation-induced emission strategy towards high-efficiency
luminescent liquid crystals 52
2.3 Conclusions and Perspectives 56
References 57
3 Mechanochromic Aggregation-Induced Emission Materials 60
Zhenguo Chi and Jiarui Xu
3.1 Introduction 60
3.2 Mechanochromic Non-AIE Compounds 61
3.3 Mechanochromic AIE Compounds 63
3.4 Conclusion 81
References 82
4 Chiral Recognition and Enantiomeric Excess Determination Based on
Aggregation-Induced Emission 86
Yan-Song Zheng
4.1 Introduction to Chiral Recognition 86
4.2 Chiral Recognition and Enantiomeric Excess Determination of Chiral
Amines 87
4.3 Chiral Recognition and Enantiomeric Excess Determination of Chiral
Acids 90
4.3.1 Enantiomeric excess determination of chiral acids using chiral AIE
amines 90
4.3.2 Enantiomeric excess determination of chiral acids using a chiral
receptor in the presence of an AIE compound 97
4.4 Mechanism of chiral recognition based on AIE 100
4.4.1 Mechanism of chiral recognition by a chiral AIE monoamine 101
4.4.2 Mechanism of chiral recognition by a chiral AIE diamine 101
4.5 Prospects for chiral recognition based on AIE 103
References 104
5 AIE Materials Towards Efficient Circularly Polarized Luminescence,
Organic Lasing, and Superamplified Detection of Explosives 106
Jianzhao Liu, Jacky W.Y. Lam, and Ben Zhong Tang
5.1 Introduction 106
5.2 AIE Materials with Efficient Circularly Polarized Luminescence and
Large Dissymmetry Factor 106
5.2.1 Aggregation-induced circular dichroism 107
5.2.2 AIE, fluorescence decay dynamics and theoretical understanding 109
5.2.3 Aggregation-induced circularly polarized luminescence 112
5.2.4 Supramolecular assembly and structural modeling 114
5.3 AIE Materials for Organic Lasing 117
5.3.1 Fabrication of nano-structures 117
5.3.2 Lasing performances 118
5.4 AIE Materials for Superamplified Detection of Explosives 120
5.4.1 Hyperbranched polymer-based sensor 121
5.4.2 Mesoporous material-based sensor 126
5.5 Conclusion 126
References 127
6 Aggregation-Induced Emission and Applications of Aryl-Substituted Pyrrole
Derivatives 129
Bin Tong and Yuping Dong
6.1 Introduction 129
6.2 Luminescence Properties of Triphenylpyrrole Derivatives in the
Aggregated State 130
6.3 Applications 134
6.4 Aggregation-Induced Emission of Pentaphenylpyrrole 145
6.5 AIEE Mechanism of Pentaphenylpyrrole 148
6.6 Conclusion 150
References 150
7 Biogenic Amine Sensing with Aggregation-Induced Emission-Active
Tetraphenylethenes 154
Takanobu Sanji and Masato Tanaka
7.1 Introduction 154
7.1.1 Biogenic amines 154
7.1.2 Sensing methods for biogenic amines 154
7.2 Fluorimetric Sensing of Biogenic Amines with AIE-Active TPEs 155
7.2.1 Design for fluorimetric sensing of biogenic amines 155
7.2.2 Sensing studies and statistical analysis 155
7.2.3 Determination of histamine concentration 159
7.2.4 Fluorimetric sensing of melamine with AIE-active TPEs 160
7.3 Summary and Outlook 160
References 161
8 New Chemo-/Biosensors with Silole and Tetraphenylethene Molecules Based
on the Aggregation and Deaggregation Mechanism 162
Ming Wang, Guanxin Zhang, and Deqing Zhang
8.1 Introduction 162
8.2 Cation and Anion Sensors 163
8.3 Fluorimetric Biosensors for Biomacromolecules 166
8.4 Fluorimetric Assays for Enzymes 170
8.5 Fluorimetric Detection of Physiologically Important Small Molecules 177
8.6 Miscellaneous Sensors 180
8.7 Conclusion and Outlook 182
References 182
9 Carbohydrate-Functionalized AIE-Active Molecules as Luminescent Probes
for Biosensing 186
Qi Chen and Bao-Hang Han
9.1 Introduction 186
9.2 Carbohydrate-Bearing AIE-Active Molecules 187
9.2.1 Carbohydrate-bearing siloles 188
9.2.2 Carbohydrate-bearing phosphole oxides 189
9.2.3 Carbohydrate-bearing tetraphenylethenes 190
9.3 Luminescent Probes for Lectins 192
9.4 Luminescent Probes for Enzymes 196
9.5 Luminescent Probes for Viruses and Toxins 200
9.6 Conclusion 202
Acknowledgments 202
References 202
10 Aggregation-Induced Emission Dyes for In Vivo Functional Bioimaging 205
Jun Qian, Dan Wang, and Sailing He
10.1 Introduction 205
10.2 AIE Dyes for Macro In Vivo Functional Bioimaging 206
10.2.1 AIE dye-encapsulated phospholipid-PEG nanomicelles 206
10.2.2 AIE dye-encapsulated nanomicelles for SLN mapping of mice 206
10.2.3 AIE dye-encapsulated nanomicelles for tumor targeting of mice 212
10.2.4 Other types of AIE-nanoparticles for in vivo functional bioimaging
217
10.3 Multiphoton-Induced Fluorescence from AIE Dyes and Applications in
In Vivo Functional Microscopic Imaging 219
10.3.1 Two- and three-photon-induced fluorescence of AIE dyes 219
10.3.2 AIE dye-encapsulated nanomicelles for two-photon blood vessel
imaging
of live mice 223
10.3.3 AIE dye-encapsulated nanomicelles for two-photon brain imaging
of live mice 226
10.4 Summary and Perspectives 228
Acknowledgments 230
References 230
11 Specific Light-Up Bioprobes with Aggregation-Induced Emission
Characteristics for Protein Sensing 234
Jing Liang, Haibin Shi, Ben Zhong Tang, and Bin Liu
11.1 Introduction 234
11.2 In Vitro Detection of Integrin avb3 Using a TPS-Based Probe 235
11.2.1 Detection mechanisms 236
11.2.2 Synthesis and characterization of the TPS-2cRGD probe 236
11.2.3 Detection of integrin in solutions 238
11.2.4 In vitro sensing of integrin in cancer cells 239
11.3 Real-Time Monitoring of Cell Apoptosis and Drug Screening with a
TPE-Based Probe 240
11.3.1 Design principles 240
11.3.2 Synthesis and characterization of Ac-DEVEK-TPE probe 241
11.3.3 Detection of caspase and kinetic study of caspase activities in
solutions 242
11.3.4 Imaging of cell apoptosis and screening of apoptosis-inducing agents
243
11.4 In Vivo Monitoring of Cell Apoptosis and Drug Screening with
PyTPE-Based Probe 246
11.4.1 Working principles 246
11.4.2 Synthesis and characterization of DEVD-PyTPE probe 247
11.4.3 Monitoring of caspase activities in solutions 248
11.4.4 In vitro and in vivo imaging of cell apoptosis 248
11.5 Conclusion 250
Acknowledgments 250
References 251
12 Applications of Aggregation-Induced Emission Materials in Biotechnology
254
Yuning Hong, Jacky W.Y. Lam, and Ben Zhong Tang
12.1 Introduction 254
12.2 AIE Materials for Nucleic Acid Studies 255
12.2.1 Quantitation and gel visualization of DNA and RNA 255
12.2.2 Specific probing of G-quadruplex DNA formation 257
12.3 AIE Materials for Protein Studies 258
12.3.1 Quantitation and PAGE staining of proteins 258
12.3.2 Fluorescence immunoassay by AIE materials 261
12.3.3 Monitoring of the unfolding/refolding process of human serum albumin
261
12.3.4 Monitoring and inhibition of amyloid fibrillation of insulin 262
12.4 AIE Materials for Live Cell Imaging 264
12.4.1 AIE bioprobes for long-term cell tracking 264
12.4.2 AIE nanoparticles for cell staining 264
12.5 Conclusion 266
References 267
Index 271