AI 2024: Advances in Artificial Intelligence (eBook, PDF)
37th Australasian Joint Conference on Artificial Intelligence, AI 2024, Melbourne, VIC, Australia, November 25-29, 2024, Proceedings, Part II
Redaktion: Gong, Mingming; Wang, Derui; Xiang, Wei; Koh, Yun Sing; Song, Yiliao
Alle Infos zum eBook verschenken
AI 2024: Advances in Artificial Intelligence (eBook, PDF)
37th Australasian Joint Conference on Artificial Intelligence, AI 2024, Melbourne, VIC, Australia, November 25-29, 2024, Proceedings, Part II
Redaktion: Gong, Mingming; Wang, Derui; Xiang, Wei; Koh, Yun Sing; Song, Yiliao
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This two-volume set LNAI 15442-15443 constitutes the refereed proceedings of the 37th Australasian Joint Conference on Artificial Intelligence, AI 2024, held in Melbourne, VIC, Australia, during November 25-29, 2024. The 59 full papers presented together with 3 short papers were carefully reviewed and selected from 108 submissions.
Part 1: Knowledge Representation and NLP; Trustworthy and Explainable AI; Machine Learning and Data Mining. Part 2: Reinforcement Learning and Robotics; Learning Algorithms; Computer Vision; AI for Healthcare.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 63.65MB
- AI 2024: Advances in Artificial Intelligence (eBook, PDF)53,95 €
- AI 2023: Advances in Artificial Intelligence (eBook, PDF)65,95 €
- AI 2023: Advances in Artificial Intelligence (eBook, PDF)59,95 €
- PRICAI 2024: Trends in Artificial Intelligence (eBook, PDF)60,95 €
- PRICAI 2024: Trends in Artificial Intelligence (eBook, PDF)60,95 €
- PRICAI 2024: Trends in Artificial Intelligence (eBook, PDF)60,95 €
- PRICAI 2024: Trends in Artificial Intelligence (eBook, PDF)60,95 €
-
-
-
Part 1: Knowledge Representation and NLP; Trustworthy and Explainable AI; Machine Learning and Data Mining. Part 2: Reinforcement Learning and Robotics; Learning Algorithms; Computer Vision; AI for Healthcare.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Springer Nature Singapore
- Seitenzahl: 460
- Erscheinungstermin: 23. November 2024
- Englisch
- ISBN-13: 9789819603510
- Artikelnr.: 72328725
- Verlag: Springer Nature Singapore
- Seitenzahl: 460
- Erscheinungstermin: 23. November 2024
- Englisch
- ISBN-13: 9789819603510
- Artikelnr.: 72328725
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
.- ECoDe: A Sample-Efficient Method for Co-Design of Robotic Agents.
.- Causally driven hierarchies for Feudal Multi-Agent Reinforcement Learning.
.- Graceful Task Adaptation with a Bi-Hemispheric RL Agent.
.- Towards Virtual Character Control via Partial Story Sifting.
.- Boosting Reinforcement Learning Algorithms in Continuous Robotic Reaching Tasks using Adaptive Potential Functions.
.- Online Deep Reinforcement Learning of Servo Control for a Small-Scale Bio-Inspired Wing.
.- Posterior Tracking Algorithm for Multi-objective Classification Bandits.
.- Learning Algorithms
.- Approximate Nearest Neighbour Search on Dynamic Datasets: An Investigation.
.- Pathwise Gradient Variance Reduction with Control Variates in Variational Inference.
.- Active Continual Learning: On Balancing Knowledge Retention and Learnability.
.- Bayesian Parametric Proportional Hazards Regression with the Fused Lasso.
.- Revisiting Bagging for Stochastic Algorithms.
.- Sampling of Large Probabilistic Graphical Models Using Arithmetic Circuits.
.- Importance-based Pruning for Genetic Programming based Symbolic Regression.
.- Quantifying Manifolds: Do the Manifolds Learned by Generative Adversarial Networks Converge to the Real Data Manifold?.
.- Equality Generating Dependencies in Description Logics via Path Agreements.
.- Computer Vision
.- End-to-end Truck Speed Detection using Deep Multi-Task Learning.
.- Real-Time Lightweight 3D Hand-Object Pose Estimation Using Temporal Graph Convolution Networks.
.- New Perspectives for the Deep Learning Based Photography Aesthetics Assessment.
.- 3DSSG-Cap: A Caption Enhanced Dataset for 3D Visual Grounding.
.- Multi-scale Cooperative Multimodal Transformers for Multimodal Sentiment Analysis in Videos.
.- Chain of Thought Prompting in Vision-Language Model for Vision Reasoning Tasks.
.- Enabling Visual Intelligence by Leveraging Visual Object States in a Neurosymbolic Framework.
.- AI for Healthcare
.- A Self-Adaptive Framework for Efficient Cell Detection and Segmentation in Histopathological
Images with Minimal Expert Input.
.- Learning Low-Energy Consumption Obstacle Detection Models for the Blind.
.- Claimsformer: Pretrained Transformer for Administrative Claims Data to Predict Chronic Conditions.
.- Online Machine Learning for Real-Time Cell Culture Process Monitoring.
.- Motif-induced Subgraph Generative Learning for Explainable Neurological Disorder Detection.
.- Multimodal Hyperbolic Graph Learning for Alzheimer's Disease Detection.
.- Real-Time Human Activity Recognition Using Non-Intrusive Sensing and Continual Learning.
.- Unsupervised dMRI Artifact Detection via Angular Resolution Enhancement and Cycle Consistency Learning.
.- Assessment of Left Atrium Motion Deformation Through Full Cardiac Cycle.
.- Vision-Based Abnormal Action Dataset for Recognising Body Motion Disorders.
.- ECoDe: A Sample-Efficient Method for Co-Design of Robotic Agents.
.- Causally driven hierarchies for Feudal Multi-Agent Reinforcement Learning.
.- Graceful Task Adaptation with a Bi-Hemispheric RL Agent.
.- Towards Virtual Character Control via Partial Story Sifting.
.- Boosting Reinforcement Learning Algorithms in Continuous Robotic Reaching Tasks using Adaptive Potential Functions.
.- Online Deep Reinforcement Learning of Servo Control for a Small-Scale Bio-Inspired Wing.
.- Posterior Tracking Algorithm for Multi-objective Classification Bandits.
.- Learning Algorithms
.- Approximate Nearest Neighbour Search on Dynamic Datasets: An Investigation.
.- Pathwise Gradient Variance Reduction with Control Variates in Variational Inference.
.- Active Continual Learning: On Balancing Knowledge Retention and Learnability.
.- Bayesian Parametric Proportional Hazards Regression with the Fused Lasso.
.- Revisiting Bagging for Stochastic Algorithms.
.- Sampling of Large Probabilistic Graphical Models Using Arithmetic Circuits.
.- Importance-based Pruning for Genetic Programming based Symbolic Regression.
.- Quantifying Manifolds: Do the Manifolds Learned by Generative Adversarial Networks Converge to the Real Data Manifold?.
.- Equality Generating Dependencies in Description Logics via Path Agreements.
.- Computer Vision
.- End-to-end Truck Speed Detection using Deep Multi-Task Learning.
.- Real-Time Lightweight 3D Hand-Object Pose Estimation Using Temporal Graph Convolution Networks.
.- New Perspectives for the Deep Learning Based Photography Aesthetics Assessment.
.- 3DSSG-Cap: A Caption Enhanced Dataset for 3D Visual Grounding.
.- Multi-scale Cooperative Multimodal Transformers for Multimodal Sentiment Analysis in Videos.
.- Chain of Thought Prompting in Vision-Language Model for Vision Reasoning Tasks.
.- Enabling Visual Intelligence by Leveraging Visual Object States in a Neurosymbolic Framework.
.- AI for Healthcare
.- A Self-Adaptive Framework for Efficient Cell Detection and Segmentation in Histopathological
Images with Minimal Expert Input.
.- Learning Low-Energy Consumption Obstacle Detection Models for the Blind.
.- Claimsformer: Pretrained Transformer for Administrative Claims Data to Predict Chronic Conditions.
.- Online Machine Learning for Real-Time Cell Culture Process Monitoring.
.- Motif-induced Subgraph Generative Learning for Explainable Neurological Disorder Detection.
.- Multimodal Hyperbolic Graph Learning for Alzheimer's Disease Detection.
.- Real-Time Human Activity Recognition Using Non-Intrusive Sensing and Continual Learning.
.- Unsupervised dMRI Artifact Detection via Angular Resolution Enhancement and Cycle Consistency Learning.
.- Assessment of Left Atrium Motion Deformation Through Full Cardiac Cycle.
.- Vision-Based Abnormal Action Dataset for Recognising Body Motion Disorders.