The book covers the entire ML application lifecycle, starting with defining the problem and collecting data, then moving on to model training, evaluation, and deployment. It delves into crucial aspects like data preprocessing, feature engineering, and model selection, offering best practices for each stage. Furthermore, it addresses the challenges of scaling ML applications, including infrastructure considerations and monitoring strategies.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.