57,95 €
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
57,95 €
Als Download kaufen
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
29 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book provides a bridge between high school and undergraduate mathematics courses on algebra and geometry.The text focuses on linear equations, polynomial equations, and quadratic forms. The first few chapters cover foundational topics. The remaining chapters form the mathematical core of the book.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 7.02MB
Andere Kunden interessierten sich auch für
- Simon SerovajskyArchitecture of Mathematics (eBook, PDF)48,95 €
- A. T. FomenkoVariational Problems in Topology (eBook, PDF)61,95 €
- Daniel GerbnerExtremal Finite Set Theory (eBook, PDF)46,95 €
- The Language of Symmetry (eBook, PDF)25,95 €
- D. C. GoldreiClassic Set Theory (eBook, PDF)84,95 €
- John TaylorUnderstanding Mathematical Proof (eBook, PDF)65,95 €
- Reflections on the Foundations of Mathematics: Essays in Honor of Solomon Feferman (eBook, PDF)52,95 €
-
-
-
This book provides a bridge between high school and undergraduate mathematics courses on algebra and geometry.The text focuses on linear equations, polynomial equations, and quadratic forms. The first few chapters cover foundational topics. The remaining chapters form the mathematical core of the book.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 424
- Erscheinungstermin: 22. Juni 2021
- Englisch
- ISBN-13: 9781000402506
- Artikelnr.: 61821276
- Verlag: Taylor & Francis
- Seitenzahl: 424
- Erscheinungstermin: 22. Juni 2021
- Englisch
- ISBN-13: 9781000402506
- Artikelnr.: 61821276
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Mark V. Lawson is a professor in the Department of Mathematics at Heriot-Watt University. Prof. Lawson has published more than 70 papers and has given seminars on his research work both at home and abroad. His research interests focus on algebraic semigroup theory and its applications. In 2017, he was awarded the Mahoney-Neumann-Room prize by the Australian Mathematical Society for one of his papers.
Prolegomena. Section I. Ideas. 1. The Nature of Mathematics. 1.1.
Mathematics in History. 1.2. Mathematics Today. 1.3. The Scope of
Mathematics. 1.4. What They (Probably) Didn't Tell You in School. 1.5.
Further Reading. 2. Proofs. 2.1. Mathematical Truth. 2.2. Fundamental
Assumption of Logic. 2.3. Five Easy Proofs. 2.4. Axioms. 2.5. Un Petit Peu
De Philosophie. 2.6. Mathematical Creativity. 2.7. Proving Something False.
2.8. Terminology. 2.9. Advice on Proofs. 3. Foundations. 3.1. Sets. 3.2
Boolean Proofs. 3.3. Relations. 3.4. Functions. 3.5. Equivalence Relations.
3.6. Order Relations. 3.7. Quantifiers. 3.8. Proofs by Inductions. 3.9.
Counting. 3.10. Infinite Numbers. 4. Algebra Redux. 4.1. Rules of the Game.
4.2. Algebraic Axioms for Real Numbers. 4.3. Solving Quadratic Equations.
4.4. Binomial Theorem. 4.5. Boolean Algebras. Characterizing Real Numbers.
Section II. Theories. 5. Number Theory. 5.1. Remainder Theorem. 5.2.
Greatest Common Divisors. 5.3. Fundamental Theorem of Arithmetic. 5.5.
Continued Fractions. 6. Complex Numbers. 6.1. Complex Number Arithmetic.
6.2. Complex Number Geometry. 6.3 Euler's Formula for Complex Numbers. 7.
Polynomials. 7.1. Terminology. 7.2. The Remainder Theorem. 7.3. Roots of
Polynomials. 7.4. Fundamental Theorem of Algebra. 7.5. Arbitrary Roots of
Complex Number. 7.6. Greatest Common Divisors of Complex Numbers. 7.7.
Irreducible Polynomials. 7.8 Partial Fractions. 7.9. Radical Solutions.
7.10. Algebraic and Transcendental Numbers. 7.11. Modular Arithmetic with
Polynomials. 8. Matrices. 8.1. Matrix Arithmetic. 8.2. Matrix Algebra. 8.3.
Solving Systems of Linear Equations. 8.4. Determinants. 8.5. Invertible
Matrices. 8.6. Diagonalization. 8.7. Blankinship's Algorithm. 9. Vectors.
9.1. Vectors Geometrically. 9.2. Vectors Algebraically. 9.3. Geometric
Meaning of Determinants. 9.4. Geometry with Vectors. 9.5. Linear Functions.
Algebraic Meaning of Determinants. 9.7. Quaternions. 10. The Principal Axis
Theorem. 10.1. Orthogonal Matrices. 10.2. Orthogonal Diagonalization. 10.3.
Conics and Quadrics. 11. What are the Real Numbers? 11.1 The Properties of
the Real Numbers. 11.2. Approximating Real Numbers by Rational Numbers.
11.3. A Construction of the Real Numbers. Epilegomena. Bibliography. Index.
Mathematics in History. 1.2. Mathematics Today. 1.3. The Scope of
Mathematics. 1.4. What They (Probably) Didn't Tell You in School. 1.5.
Further Reading. 2. Proofs. 2.1. Mathematical Truth. 2.2. Fundamental
Assumption of Logic. 2.3. Five Easy Proofs. 2.4. Axioms. 2.5. Un Petit Peu
De Philosophie. 2.6. Mathematical Creativity. 2.7. Proving Something False.
2.8. Terminology. 2.9. Advice on Proofs. 3. Foundations. 3.1. Sets. 3.2
Boolean Proofs. 3.3. Relations. 3.4. Functions. 3.5. Equivalence Relations.
3.6. Order Relations. 3.7. Quantifiers. 3.8. Proofs by Inductions. 3.9.
Counting. 3.10. Infinite Numbers. 4. Algebra Redux. 4.1. Rules of the Game.
4.2. Algebraic Axioms for Real Numbers. 4.3. Solving Quadratic Equations.
4.4. Binomial Theorem. 4.5. Boolean Algebras. Characterizing Real Numbers.
Section II. Theories. 5. Number Theory. 5.1. Remainder Theorem. 5.2.
Greatest Common Divisors. 5.3. Fundamental Theorem of Arithmetic. 5.5.
Continued Fractions. 6. Complex Numbers. 6.1. Complex Number Arithmetic.
6.2. Complex Number Geometry. 6.3 Euler's Formula for Complex Numbers. 7.
Polynomials. 7.1. Terminology. 7.2. The Remainder Theorem. 7.3. Roots of
Polynomials. 7.4. Fundamental Theorem of Algebra. 7.5. Arbitrary Roots of
Complex Number. 7.6. Greatest Common Divisors of Complex Numbers. 7.7.
Irreducible Polynomials. 7.8 Partial Fractions. 7.9. Radical Solutions.
7.10. Algebraic and Transcendental Numbers. 7.11. Modular Arithmetic with
Polynomials. 8. Matrices. 8.1. Matrix Arithmetic. 8.2. Matrix Algebra. 8.3.
Solving Systems of Linear Equations. 8.4. Determinants. 8.5. Invertible
Matrices. 8.6. Diagonalization. 8.7. Blankinship's Algorithm. 9. Vectors.
9.1. Vectors Geometrically. 9.2. Vectors Algebraically. 9.3. Geometric
Meaning of Determinants. 9.4. Geometry with Vectors. 9.5. Linear Functions.
Algebraic Meaning of Determinants. 9.7. Quaternions. 10. The Principal Axis
Theorem. 10.1. Orthogonal Matrices. 10.2. Orthogonal Diagonalization. 10.3.
Conics and Quadrics. 11. What are the Real Numbers? 11.1 The Properties of
the Real Numbers. 11.2. Approximating Real Numbers by Rational Numbers.
11.3. A Construction of the Real Numbers. Epilegomena. Bibliography. Index.
Prolegomena. Section I. Ideas. 1. The Nature of Mathematics. 1.1.
Mathematics in History. 1.2. Mathematics Today. 1.3. The Scope of
Mathematics. 1.4. What They (Probably) Didn't Tell You in School. 1.5.
Further Reading. 2. Proofs. 2.1. Mathematical Truth. 2.2. Fundamental
Assumption of Logic. 2.3. Five Easy Proofs. 2.4. Axioms. 2.5. Un Petit Peu
De Philosophie. 2.6. Mathematical Creativity. 2.7. Proving Something False.
2.8. Terminology. 2.9. Advice on Proofs. 3. Foundations. 3.1. Sets. 3.2
Boolean Proofs. 3.3. Relations. 3.4. Functions. 3.5. Equivalence Relations.
3.6. Order Relations. 3.7. Quantifiers. 3.8. Proofs by Inductions. 3.9.
Counting. 3.10. Infinite Numbers. 4. Algebra Redux. 4.1. Rules of the Game.
4.2. Algebraic Axioms for Real Numbers. 4.3. Solving Quadratic Equations.
4.4. Binomial Theorem. 4.5. Boolean Algebras. Characterizing Real Numbers.
Section II. Theories. 5. Number Theory. 5.1. Remainder Theorem. 5.2.
Greatest Common Divisors. 5.3. Fundamental Theorem of Arithmetic. 5.5.
Continued Fractions. 6. Complex Numbers. 6.1. Complex Number Arithmetic.
6.2. Complex Number Geometry. 6.3 Euler's Formula for Complex Numbers. 7.
Polynomials. 7.1. Terminology. 7.2. The Remainder Theorem. 7.3. Roots of
Polynomials. 7.4. Fundamental Theorem of Algebra. 7.5. Arbitrary Roots of
Complex Number. 7.6. Greatest Common Divisors of Complex Numbers. 7.7.
Irreducible Polynomials. 7.8 Partial Fractions. 7.9. Radical Solutions.
7.10. Algebraic and Transcendental Numbers. 7.11. Modular Arithmetic with
Polynomials. 8. Matrices. 8.1. Matrix Arithmetic. 8.2. Matrix Algebra. 8.3.
Solving Systems of Linear Equations. 8.4. Determinants. 8.5. Invertible
Matrices. 8.6. Diagonalization. 8.7. Blankinship's Algorithm. 9. Vectors.
9.1. Vectors Geometrically. 9.2. Vectors Algebraically. 9.3. Geometric
Meaning of Determinants. 9.4. Geometry with Vectors. 9.5. Linear Functions.
Algebraic Meaning of Determinants. 9.7. Quaternions. 10. The Principal Axis
Theorem. 10.1. Orthogonal Matrices. 10.2. Orthogonal Diagonalization. 10.3.
Conics and Quadrics. 11. What are the Real Numbers? 11.1 The Properties of
the Real Numbers. 11.2. Approximating Real Numbers by Rational Numbers.
11.3. A Construction of the Real Numbers. Epilegomena. Bibliography. Index.
Mathematics in History. 1.2. Mathematics Today. 1.3. The Scope of
Mathematics. 1.4. What They (Probably) Didn't Tell You in School. 1.5.
Further Reading. 2. Proofs. 2.1. Mathematical Truth. 2.2. Fundamental
Assumption of Logic. 2.3. Five Easy Proofs. 2.4. Axioms. 2.5. Un Petit Peu
De Philosophie. 2.6. Mathematical Creativity. 2.7. Proving Something False.
2.8. Terminology. 2.9. Advice on Proofs. 3. Foundations. 3.1. Sets. 3.2
Boolean Proofs. 3.3. Relations. 3.4. Functions. 3.5. Equivalence Relations.
3.6. Order Relations. 3.7. Quantifiers. 3.8. Proofs by Inductions. 3.9.
Counting. 3.10. Infinite Numbers. 4. Algebra Redux. 4.1. Rules of the Game.
4.2. Algebraic Axioms for Real Numbers. 4.3. Solving Quadratic Equations.
4.4. Binomial Theorem. 4.5. Boolean Algebras. Characterizing Real Numbers.
Section II. Theories. 5. Number Theory. 5.1. Remainder Theorem. 5.2.
Greatest Common Divisors. 5.3. Fundamental Theorem of Arithmetic. 5.5.
Continued Fractions. 6. Complex Numbers. 6.1. Complex Number Arithmetic.
6.2. Complex Number Geometry. 6.3 Euler's Formula for Complex Numbers. 7.
Polynomials. 7.1. Terminology. 7.2. The Remainder Theorem. 7.3. Roots of
Polynomials. 7.4. Fundamental Theorem of Algebra. 7.5. Arbitrary Roots of
Complex Number. 7.6. Greatest Common Divisors of Complex Numbers. 7.7.
Irreducible Polynomials. 7.8 Partial Fractions. 7.9. Radical Solutions.
7.10. Algebraic and Transcendental Numbers. 7.11. Modular Arithmetic with
Polynomials. 8. Matrices. 8.1. Matrix Arithmetic. 8.2. Matrix Algebra. 8.3.
Solving Systems of Linear Equations. 8.4. Determinants. 8.5. Invertible
Matrices. 8.6. Diagonalization. 8.7. Blankinship's Algorithm. 9. Vectors.
9.1. Vectors Geometrically. 9.2. Vectors Algebraically. 9.3. Geometric
Meaning of Determinants. 9.4. Geometry with Vectors. 9.5. Linear Functions.
Algebraic Meaning of Determinants. 9.7. Quaternions. 10. The Principal Axis
Theorem. 10.1. Orthogonal Matrices. 10.2. Orthogonal Diagonalization. 10.3.
Conics and Quadrics. 11. What are the Real Numbers? 11.1 The Properties of
the Real Numbers. 11.2. Approximating Real Numbers by Rational Numbers.
11.3. A Construction of the Real Numbers. Epilegomena. Bibliography. Index.