This book presents the various algebraic techniques for solving partial differential equations to yield exact solutions, techniques developed by the author in recent years and with emphasis on physical equations such as: the Maxwell equations, the Dirac equations, the KdV equation, the KP equation, the nonlinear Schrodinger equation, the Davey and Stewartson equations, the Boussinesq equations in geophysics, the Navier-Stokes equations and the boundary layer problems. In order to solve them, I have employed the grading technique, matrix differential operators, stable-range of nonlinear terms, moving frames, asymmetric assumptions, symmetry transformations, linearization techniques and special functions. The book is self-contained and requires only a minimal understanding of calculus and linear algebra, making it accessible to a broad audience in the fields of mathematics, the sciences and engineering. Readers may find the exact solutions and mathematical skills needed in their own research.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
From the book reviews:
"Professor Xu's treatise is an interesting addition to the literature on exact/explicit solutions to nonlinear partial differential equations. ... the present book will be useful for a large audience of applied mathematicians, specialists in numerical analysis, physicists and engineers." (Enrique G. Reyes, Mathematical Reviews, August, 2014)
"Professor Xu's treatise is an interesting addition to the literature on exact/explicit solutions to nonlinear partial differential equations. ... the present book will be useful for a large audience of applied mathematicians, specialists in numerical analysis, physicists and engineers." (Enrique G. Reyes, Mathematical Reviews, August, 2014)