Edwin H. Spanier
Algebraic Topology (eBook, PDF)
69,95 €
69,95 €
inkl. MwSt.
Sofort per Download lieferbar
35 °P sammeln
69,95 €
Als Download kaufen
69,95 €
inkl. MwSt.
Sofort per Download lieferbar
35 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
69,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
35 °P sammeln
Edwin H. Spanier
Algebraic Topology (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book surveys the fundamental ideas of algebraic topology. The first part covers the fundamental group, its definition and application in the study of covering spaces. The second part turns to homology theory including cohomology, cup products, cohomology operations and topological manifolds. The final part is devoted to Homotropy theory, including basic facts about homotropy groups and applications to obstruction theory.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 51.85MB
Andere Kunden interessierten sich auch für
- Joseph J. RotmanAn Introduction to Algebraic Topology (eBook, PDF)51,95 €
- Glen E. BredonTopology and Geometry (eBook, PDF)53,95 €
- V. G. BoltyanskiiIntuitive Combinatorial Topology (eBook, PDF)35,95 €
- James W. VickHomology Theory (eBook, PDF)48,95 €
- Lawrence ConlonDifferentiable Manifolds (eBook, PDF)61,95 €
- Raoul BottDifferential Forms in Algebraic Topology (eBook, PDF)48,95 €
- John M. LeeIntroduction to Smooth Manifolds (eBook, PDF)65,95 €
-
-
-
This book surveys the fundamental ideas of algebraic topology. The first part covers the fundamental group, its definition and application in the study of covering spaces. The second part turns to homology theory including cohomology, cup products, cohomology operations and topological manifolds. The final part is devoted to Homotropy theory, including basic facts about homotropy groups and applications to obstruction theory.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 548
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781468493221
- Artikelnr.: 44179644
- Verlag: Springer New York
- Seitenzahl: 548
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781468493221
- Artikelnr.: 44179644
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Set theory.- 2 General topology.- 3 Group theory.- 4 Modules.- 5 Euclidean spaces.- 1 Homotopy and The Fundamental Group.- 1 Categories.- 2 Functors.- 3 Homotopy.- 4 Retraction and deformation.- 5 H spaces.- 6 Suspension.- 7 The fundamental groupoid.- 8 The fundamental group.- Exercises.- 2 Covering Spaces and Fibrations.- 1 Covering projections.- 2 The homotopy lifting property.- 3 Relations with the fundamental group.- 4 The lifting problem.- 5 The classification of covering projections.- 6 Covering transformations.- 7 Fiber bundles.- 8 Fibrations.- Exercises.- 3 Polyhedra.- 1 Simplicial complexes.- 2 Linearity in simplicial complexes.- 3 Subdivision.- 4 Simplicial approximation.- 5 Contiguity classes.- 6 The edge-path groupoid.- 7 Graphs.- 8 Examples and applications.- Exercises.- 4 Homology.- 1 Chain complexes.- 2 Chain homotopy.- 3 The homology of simplicial complexes.- 4 Singular homology.- 5 Exactness.- 6 Mayer-Vietoris sequences.- 7 Some applications of homology.- 8 Axiomaticcharacterization of homology.- Exercises.- 5 Products.- 1 Homology with coefficients.- 2 The universal-coefficient theorem for homology.- 3 The Künneth formula.- 4 Cohomology.- 5 The universal-coefficient theorem for cohomology.- 6 Cup and cap products.- 7 Homology of fiber bundles.- 8 The cohomology algebra.- 9 The Steenrod squaring operations.- Exercises.- 6 General Cohomology Theory and Duality.- 1 The slant product.- 2 Duality in topological manifolds.- 3 The fundamental class of a manifold.- 4 The Alexander cohomology theory.- 5 The homotopy axiom for the Alexander theory.- 6 Tautness and continuity.- 7 Presheaves.- 8 Fine presheaves.- 9 Applications of the cohomology of presheaves.- 10 Characteristic classes.- Exercises.- 7 Homotopy Theory.- 1 Exact sequences of sets of homotopy classes.- 2 Higher homotopy groups.- 3 Change of base points.- 4 The Hurewicz homomorphism.- 5 The Hurewicz isomorphism theorem.- 6 CW complexes.- 7 Homotopy functors.- 8 Weak homotopy type.- Exercises.-8 Obstruction Theory.- 1 Eilenberg-MacLane spaces.- 2 Principal fibrations.- 3 Moore-Postnikov factorizations.- 4 Obstruction theory.- 5 The suspension map.- Exercises.- 9 Spectral Sequences and Homotopy Groups of Spheres.- 1 Spectral sequences.- 2 The spectral sequence of a fibration.- 3 Applications of the homology spectral sequence.- 4 Multiplicative properties of spectral sequences.- 5 Applications of the cohomology spectral sequence.- 6 Serre classes of abelian groups.- 7 Homotopy groups of spheres.- Exercises.
1 Set theory.- 2 General topology.- 3 Group theory.- 4 Modules.- 5 Euclidean spaces.- 1 Homotopy and The Fundamental Group.- 1 Categories.- 2 Functors.- 3 Homotopy.- 4 Retraction and deformation.- 5 H spaces.- 6 Suspension.- 7 The fundamental groupoid.- 8 The fundamental group.- Exercises.- 2 Covering Spaces and Fibrations.- 1 Covering projections.- 2 The homotopy lifting property.- 3 Relations with the fundamental group.- 4 The lifting problem.- 5 The classification of covering projections.- 6 Covering transformations.- 7 Fiber bundles.- 8 Fibrations.- Exercises.- 3 Polyhedra.- 1 Simplicial complexes.- 2 Linearity in simplicial complexes.- 3 Subdivision.- 4 Simplicial approximation.- 5 Contiguity classes.- 6 The edge-path groupoid.- 7 Graphs.- 8 Examples and applications.- Exercises.- 4 Homology.- 1 Chain complexes.- 2 Chain homotopy.- 3 The homology of simplicial complexes.- 4 Singular homology.- 5 Exactness.- 6 Mayer-Vietoris sequences.- 7 Some applications of homology.- 8 Axiomaticcharacterization of homology.- Exercises.- 5 Products.- 1 Homology with coefficients.- 2 The universal-coefficient theorem for homology.- 3 The Künneth formula.- 4 Cohomology.- 5 The universal-coefficient theorem for cohomology.- 6 Cup and cap products.- 7 Homology of fiber bundles.- 8 The cohomology algebra.- 9 The Steenrod squaring operations.- Exercises.- 6 General Cohomology Theory and Duality.- 1 The slant product.- 2 Duality in topological manifolds.- 3 The fundamental class of a manifold.- 4 The Alexander cohomology theory.- 5 The homotopy axiom for the Alexander theory.- 6 Tautness and continuity.- 7 Presheaves.- 8 Fine presheaves.- 9 Applications of the cohomology of presheaves.- 10 Characteristic classes.- Exercises.- 7 Homotopy Theory.- 1 Exact sequences of sets of homotopy classes.- 2 Higher homotopy groups.- 3 Change of base points.- 4 The Hurewicz homomorphism.- 5 The Hurewicz isomorphism theorem.- 6 CW complexes.- 7 Homotopy functors.- 8 Weak homotopy type.- Exercises.-8 Obstruction Theory.- 1 Eilenberg-MacLane spaces.- 2 Principal fibrations.- 3 Moore-Postnikov factorizations.- 4 Obstruction theory.- 5 The suspension map.- Exercises.- 9 Spectral Sequences and Homotopy Groups of Spheres.- 1 Spectral sequences.- 2 The spectral sequence of a fibration.- 3 Applications of the homology spectral sequence.- 4 Multiplicative properties of spectral sequences.- 5 Applications of the cohomology spectral sequence.- 6 Serre classes of abelian groups.- 7 Homotopy groups of spheres.- Exercises.