Frontmatter -- CONTENTS -- INTRODUCTION -- § 1. Analytic and Algebraic Topology -- § 2. Problems and Examples -- PART I. SIMPLICIAL COMPLEXES -- Chapter 1. GEOMETRY OF SIMPLICIAL COMPLEXES -- § 3. Hulls and Stars -- § 4. Barycentric Stars -- § 5. Simplicial Mappings -- § 6. Neighboring Mappings -- Chapter 2. HOMOLOGY GROUPS AND COHOMOLOGY GROUPS -- § 7. Orientation. Incidence Numbers -- § 8. Homology Groups -- § 9. Examples and Applications -- § 10. Cohomology Groups -- § 11. Homotopic Mappings -- PART II. CHAIN COMPLEXES AND THEIR APPLICATIONS -- Chapter 3. GENERAL THEORY -- § 12. Homology Groups of Chain Complexes -- § 13. Subcomplexes and Factor Complexes -- § 14. The Boundary Operator -- Chapter 4. FREE CHAIN COMPLEXES -- § 15. Modules and Dual Modules -- § 16. Mappings and Dual Mappings -- § 17. Free Chain Complexes. Canonical Bases -- PART III. CELL COMPLEXES. INVARIANCE -- Chapter 5. CELL COMPLEXES -- § 18. Cell Decompositions -- § 19. The Homology Groups of Cell Decompositions -- § 20. Normal Subdivisions -- Chapter 6. INVARIANCE OF THE HOMOLOGY GROUPS -- § 21. Proof of Invariance -- § 22. Supplements. Generalizations -- § 23. Results and Applications -- § 24. Local Homology Groups -- PART IV. DEVELOPMENT OF THE THEORY -- Chapter 7. PRODUCTS IN POLYHEDRA -- § 25. The Cohomology Ring -- § 26. The Cap Product -- Chapter 8. MANIFOLDS -- § 27. Definitions -- § 28. Complementary Cell Decompositions -- § 29. The Poincaré Duality Theorem -- Chapter 9. THE COHOMOLOGY RING OF A MANIFOLD -- § 30. Products in Manifolds -- § 31. Product Matrices -- BIBLIOGRAPHY -- INDEX
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.