48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
Jetzt verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
  • Format: PDF

This book develops a framework to analyze algorithmic aspects of discrete choice models in convex optimization. The central aspect is to derive new prox-functions from discrete choice surplus functions, which are then incorporated into convex optimization schemes. The book provides further economic applications of discrete choice prox-functions within the context of convex optimization such as network manipulation based on alternating minimization and dynamic pricing for online marketplaces.
About the author
David Müller is a data scientist and former postdoc at the Chair of Business
…mehr

Produktbeschreibung
This book develops a framework to analyze algorithmic aspects of discrete choice models in convex optimization. The central aspect is to derive new prox-functions from discrete choice surplus functions, which are then incorporated into convex optimization schemes. The book provides further economic applications of discrete choice prox-functions within the context of convex optimization such as network manipulation based on alternating minimization and dynamic pricing for online marketplaces.

About the author

David Müller is a data scientist and former postdoc at the Chair of Business Mathematics at Chemnitz University of Technology. His research focuses on algorithmic and big data aspects of discrete choice models as well as machine learning and non-smooth optimisation.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
David Müller is a data scientist and former postdoc at the Chair of Business Mathematics at Chemnitz University of Technology. His research focuses on algorithmic and big data aspects of discrete choice models as well as machine learning and non-smooth optimisation.