Melih Savran, Levent Aydin
An Integrated Approach to Modeling and Optimization in Engineering and Science (eBook, ePUB)
81,95 €
81,95 €
inkl. MwSt.
Erscheint vor. 30.12.24
41 °P sammeln
81,95 €
Als Download kaufen
81,95 €
inkl. MwSt.
Erscheint vor. 30.12.24
41 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
81,95 €
inkl. MwSt.
Erscheint vor. 30.12.24
Alle Infos zum eBook verschenken
41 °P sammeln
Unser Service für Vorbesteller - Ihr Vorteil ohne Risiko:
Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir Ihnen den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir Ihnen den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
Melih Savran, Levent Aydin
An Integrated Approach to Modeling and Optimization in Engineering and Science (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
An Integrated Approach to Modeling and Optimization in Engineering and Science is a technical book written with the aim to evaluate the modeling and design processes of engineering systems with an integrated approach.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Melih SavranAn Integrated Approach to Modeling and Optimization in Engineering and Science (eBook, PDF)81,95 €
- Sangarappillai SivaloganathanDesign Process (eBook, ePUB)183,95 €
- Electric Discharge Hybrid-Machining Processes (eBook, ePUB)48,95 €
- Additive Manufacturing Handbook (eBook, ePUB)69,95 €
- Helmi A. YoussefMachining Technology (eBook, ePUB)203,95 €
- Namrata GangilComposite Fabrication on Age-Hardened Alloy using Friction Stir Processing (eBook, ePUB)48,95 €
- Advances in Microwave Processing for Engineering Materials (eBook, ePUB)51,95 €
-
-
-
An Integrated Approach to Modeling and Optimization in Engineering and Science is a technical book written with the aim to evaluate the modeling and design processes of engineering systems with an integrated approach.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Erscheinungstermin: 30. Dezember 2024
- Englisch
- ISBN-13: 9781040256831
- Artikelnr.: 72455028
- Verlag: Taylor & Francis
- Erscheinungstermin: 30. Dezember 2024
- Englisch
- ISBN-13: 9781040256831
- Artikelnr.: 72455028
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Melih Savran earned a BS degree in mechanical engineering at Manisa Celal Bayar University in 2013. He earned MS and PhD degrees in mechanical engineering at Izmir Katip Çelebi University in 2017 and 2023, respectively. He continues to work as a researcher at the same university. His research areas include mechanics of solids, design and mathematical modeling, machine learning, stochastic optimization, and hybrid natural/synthetic composites. He has international publications on stochastic optimization and modeling in engineering, including book chapters, journal articles, and conference papers.
Levent Aydin is an Associate Professor of Mechanical Engineering at Izmir Katip Çelebi University. He earned a PhD degree in mechanical engineering at Izmir Institute of Technology in 2011. His main research interests are stochastic optimization, mechanics of solids, biocomposites, biosensors, advanced engineering mathematics, hybrid neuro regression, and artificial intelligence modeling. Dr. Aydin has written more than 100 international publications on stochastic optimization and modeling in engineering, including book chapters, journal articles, and conference papers. He is also a consultant for many industrial research and development projects of international engineering firms. Dr. Aydin is the founder of the Optimization, Modeling and Applied Math Research Group (OMA-RG). He is the editor or author of Designing Engineering Structures Using Stochastic Optimization Methods, Bioelectrochemical Interface Engineering, Hybrid Natural Fiber Composites, Vegetable Fiber Composites and Their Technological Applications, and Fiber Technology for Fiber-Reinforced Composites.
Levent Aydin is an Associate Professor of Mechanical Engineering at Izmir Katip Çelebi University. He earned a PhD degree in mechanical engineering at Izmir Institute of Technology in 2011. His main research interests are stochastic optimization, mechanics of solids, biocomposites, biosensors, advanced engineering mathematics, hybrid neuro regression, and artificial intelligence modeling. Dr. Aydin has written more than 100 international publications on stochastic optimization and modeling in engineering, including book chapters, journal articles, and conference papers. He is also a consultant for many industrial research and development projects of international engineering firms. Dr. Aydin is the founder of the Optimization, Modeling and Applied Math Research Group (OMA-RG). He is the editor or author of Designing Engineering Structures Using Stochastic Optimization Methods, Bioelectrochemical Interface Engineering, Hybrid Natural Fiber Composites, Vegetable Fiber Composites and Their Technological Applications, and Fiber Technology for Fiber-Reinforced Composites.
1. Introduction. 2. Design of Experiment, Mathematical Modeling, and
Optimization. 3. Comparison of ANN and Neuro Regression Methods in
Mathematical Modeling. 4. Evaluation of R2 as a Model Assessment Criterion.
5. Questioning the Adequacy of Using Polynomial Structures. 6. The Effect
of Using the Taguchi Method in Experimental Design on Mathematical
Modeling. 7. Comparison of Different Test and Validation Methods Used in
Mathematical Modeling. 8. Comparison of Different Model Assessment Criteria
Used in Mathematical Modeling. 9. Comparison of the Effects of Experimental
Design Methods on Mathematical Modeling. 10. Special Functions in
Mathematical Modeling. 11. Conclusion.
Optimization. 3. Comparison of ANN and Neuro Regression Methods in
Mathematical Modeling. 4. Evaluation of R2 as a Model Assessment Criterion.
5. Questioning the Adequacy of Using Polynomial Structures. 6. The Effect
of Using the Taguchi Method in Experimental Design on Mathematical
Modeling. 7. Comparison of Different Test and Validation Methods Used in
Mathematical Modeling. 8. Comparison of Different Model Assessment Criteria
Used in Mathematical Modeling. 9. Comparison of the Effects of Experimental
Design Methods on Mathematical Modeling. 10. Special Functions in
Mathematical Modeling. 11. Conclusion.
1. Introduction. 2. Design of Experiment, Mathematical Modeling, and
Optimization. 3. Comparison of ANN and Neuro Regression Methods in
Mathematical Modeling. 4. Evaluation of R2 as a Model Assessment Criterion.
5. Questioning the Adequacy of Using Polynomial Structures. 6. The Effect
of Using the Taguchi Method in Experimental Design on Mathematical
Modeling. 7. Comparison of Different Test and Validation Methods Used in
Mathematical Modeling. 8. Comparison of Different Model Assessment Criteria
Used in Mathematical Modeling. 9. Comparison of the Effects of Experimental
Design Methods on Mathematical Modeling. 10. Special Functions in
Mathematical Modeling. 11. Conclusion.
Optimization. 3. Comparison of ANN and Neuro Regression Methods in
Mathematical Modeling. 4. Evaluation of R2 as a Model Assessment Criterion.
5. Questioning the Adequacy of Using Polynomial Structures. 6. The Effect
of Using the Taguchi Method in Experimental Design on Mathematical
Modeling. 7. Comparison of Different Test and Validation Methods Used in
Mathematical Modeling. 8. Comparison of Different Model Assessment Criteria
Used in Mathematical Modeling. 9. Comparison of the Effects of Experimental
Design Methods on Mathematical Modeling. 10. Special Functions in
Mathematical Modeling. 11. Conclusion.