73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
Jetzt verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
  • Format: PDF

This thesis focuses on a novel radio-guided surgery technique for complete tumor resections. It describes all aspects of the intraoperative probe, as well as testing and simulation of the novel technique. The presentation develops the technique from the initial idea to realistic feasibility studies that have been the subject of a press release of the American Society of Nuclear Medicine. Just a year after completing this work, the technique has now been tested for the first time on a meningioma patient, confirming all of the predictions made in this thesis.

Produktbeschreibung
This thesis focuses on a novel radio-guided surgery technique for complete tumor resections. It describes all aspects of the intraoperative probe, as well as testing and simulation of the novel technique. The presentation develops the technique from the initial idea to realistic feasibility studies that have been the subject of a press release of the American Society of Nuclear Medicine. Just a year after completing this work, the technique has now been tested for the first time on a meningioma patient, confirming all of the predictions made in this thesis.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Francesco Collamati is a particle physicist, who, since his Bachelor's degree, has studied medical applications of particle physics. In particular, he focusses on Hadron therapy and the development of possible dosimetric techniques for application during the treatments. In his PhD at the Physics Department of Rome University Sapienza, he studied the development of an innovative Radio Guided Surgery Technique exploiting beta minus decays. He now holds a fellowship at Frascati INFN National Laboratories working on "Optimization of Interaction Regions for the Future Circular Collider @Cern".
Rezensionen
"The book can be interesting for all the people interested in radio-guided surgery, including not only physicians but also physicists, mathematicians, and technologists." (Giuseppe Danilo Di Stasio and Luigi Mansi, European Journal of Nuclear Medicine and Molecular Imaging, Vol. 45, 2018)