An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"Each chapter introduces briefly the theory on well-known methods to analyze multivariate data and then focuses on the application of the multivariate techniques to example data with R. ... addressed to students in applied statistics courses or applied statisticians looking for a valuable educational textbook on multivariate analysis. ... an ideal textbook for students or persons, employed in the field of applied statistics, who wish to study the analysis of multivariate data and to apply multivariate techniques to real data." (Wiebke Werft, Biometrical Journal, Vol. 55 (6), 2013)
"This practical book provides a well-organized summary of popular multivariate data analysis techniques with practical examples. As the book title indicates, all introduced techniques are accompanied by relevant and friendly R codes, and thus it can be used for excellent R programming reference for those who wish to use R for multivariate data analysis." (Technometrics, Vol. 54 (4), November, 2012)