Dhananjay Gopal, Aniruddha Deshmukh, Abhay S Ranadive, Shubham Yadav
An Introduction to Metric Spaces (eBook, ePUB)
35,95 €
35,95 €
inkl. MwSt.
Sofort per Download lieferbar
18 °P sammeln
35,95 €
Als Download kaufen
35,95 €
inkl. MwSt.
Sofort per Download lieferbar
18 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
35,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
Dhananjay Gopal, Aniruddha Deshmukh, Abhay S Ranadive, Shubham Yadav
An Introduction to Metric Spaces (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is designed to provide an extensive understanding of Metric spaces. It presents the basics of metric spaces in a natural way which encourages geometric thinking.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 38.1MB
Andere Kunden interessierten sich auch für
- Dhananjay GopalAn Introduction to Metric Spaces (eBook, PDF)35,95 €
- Gerald BeerBornologies and Lipschitz Analysis (eBook, ePUB)48,95 €
- Manfred StollIntroduction to Real Analysis (eBook, ePUB)49,95 €
- Simon SerovajskySequential Models of Mathematical Physics (eBook, ePUB)48,95 €
- Gerald BeerBornologies and Lipschitz Analysis (eBook, PDF)48,95 €
- Neil R. NicholsonA Transition to Proof (eBook, ePUB)46,95 €
- Sasho KalajdzievskiAn Illustrated Introduction to Topology and Homotopy Solutions Manual for Part 1 Topology (eBook, ePUB)40,95 €
-
-
-
This book is designed to provide an extensive understanding of Metric spaces. It presents the basics of metric spaces in a natural way which encourages geometric thinking.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 302
- Erscheinungstermin: 14. Juli 2020
- Englisch
- ISBN-13: 9781000088014
- Artikelnr.: 59751497
- Verlag: Taylor & Francis
- Seitenzahl: 302
- Erscheinungstermin: 14. Juli 2020
- Englisch
- ISBN-13: 9781000088014
- Artikelnr.: 59751497
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. Dhananjay Gopal has a doctorate in Mathematics from Guru Ghasidas
University, Bilaspur, India, and is currently Assistant Professor of Applied
Mathematics in S V National Institute of Technology, Surat, Gujarat, India.
He is author and co-author of several papers in journals, proceedings, and a
monograph on Background and Recent Developments of Metric Fixed Point
Theory. He is devoted to general research on the theory of Nonlinear Analysis
and Fuzzy Metric Fixed Point Theory.
Mr. Aniruddha Deshmukh is currently a student of (Integrated) MSc
Mathematics and is associated to the Applied Mathematics and Humanities
Department, S V National Institute of Technology, Surat, Gujarat, India. He
has been an active student in the department and has initiated many activities
for the benefit of the students, especially as a member of the science community
(student chapter), known by the name of SCOSH. During his course,
he has also attended various internships and workshop such as the Mathematics
Training and Talent Search (MTTS) Programme for two consecutive
years (2017-2018) and has also done a project on the qualitative questions on
Differential Equations at Indian Institute of Technology (IIT), Gandhinagar,
Gujarat, India in 2019. He has also qualified CSIR-NET JRF. Furthermore,
his research interest focuses on Linear Algebra and Analysis and their applicability
in solving some real-world problems.
Abhay S. Ranadive is a Professor at the Department of Pure & Applied
Mathematics Ghasidas Vishwavidyalaya (A Central University), Bilaspur,
Chattisgarh, India. He has been teaching at the university for the last 30
years. He is author and co-author of several papers in journals and proceedings.
He is devoted to general research on the theory of fuzzy sets and fuzzy
logic, modules, and metric fixed point.
Mr. Shubham Yadav is currently a student of (Integrated) M.Sc. Mathematics
and is associated to the Applied Mathematics and Humanities Department,
S V National Institute of Technology, Surat, Gujarat, India. As a
member of SCOSH the student prominent science community in the institute,
he has attended and organized various workshops and seminars. He also
attended Madhava Mathematics Camp 2017. He did an internship on the calculus
of fuzzy numbers at NIT, Trichy and one on operator theory at IIT,
Hyderabad. He has also qualified for JRF. His main research interests are
functional analysis and fuzzy sets with a knack for learning abstract mathematical
concepts.
University, Bilaspur, India, and is currently Assistant Professor of Applied
Mathematics in S V National Institute of Technology, Surat, Gujarat, India.
He is author and co-author of several papers in journals, proceedings, and a
monograph on Background and Recent Developments of Metric Fixed Point
Theory. He is devoted to general research on the theory of Nonlinear Analysis
and Fuzzy Metric Fixed Point Theory.
Mr. Aniruddha Deshmukh is currently a student of (Integrated) MSc
Mathematics and is associated to the Applied Mathematics and Humanities
Department, S V National Institute of Technology, Surat, Gujarat, India. He
has been an active student in the department and has initiated many activities
for the benefit of the students, especially as a member of the science community
(student chapter), known by the name of SCOSH. During his course,
he has also attended various internships and workshop such as the Mathematics
Training and Talent Search (MTTS) Programme for two consecutive
years (2017-2018) and has also done a project on the qualitative questions on
Differential Equations at Indian Institute of Technology (IIT), Gandhinagar,
Gujarat, India in 2019. He has also qualified CSIR-NET JRF. Furthermore,
his research interest focuses on Linear Algebra and Analysis and their applicability
in solving some real-world problems.
Abhay S. Ranadive is a Professor at the Department of Pure & Applied
Mathematics Ghasidas Vishwavidyalaya (A Central University), Bilaspur,
Chattisgarh, India. He has been teaching at the university for the last 30
years. He is author and co-author of several papers in journals and proceedings.
He is devoted to general research on the theory of fuzzy sets and fuzzy
logic, modules, and metric fixed point.
Mr. Shubham Yadav is currently a student of (Integrated) M.Sc. Mathematics
and is associated to the Applied Mathematics and Humanities Department,
S V National Institute of Technology, Surat, Gujarat, India. As a
member of SCOSH the student prominent science community in the institute,
he has attended and organized various workshops and seminars. He also
attended Madhava Mathematics Camp 2017. He did an internship on the calculus
of fuzzy numbers at NIT, Trichy and one on operator theory at IIT,
Hyderabad. He has also qualified for JRF. His main research interests are
functional analysis and fuzzy sets with a knack for learning abstract mathematical
concepts.
Contents
Preface ix
A Note to the Reader xiii
Authors xv
1 Set Theory 1
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The empty set . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Uniqueness of the empty set . . . . . . . . . . . . . . . 9
1.1.4 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Cartesian products . . . . . . . . . . . . . . . . . . . . 9
1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Types of relations . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Equivalence relations . . . . . . . . . . . . . . . . . . . 13
1.2.3 Partition of sets . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Partial order relations . . . . . . . . . . . . . . . . . . 16
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Composition of functions . . . . . . . . . . . . . . . . 24
1.3.2 Inverse of a function . . . . . . . . . . . . . . . . . . . 26
1.3.3 Images of sets under functions . . . . . . . . . . . . . 32
1.3.4 Inverse images of sets under functions . . . . . . . . . 36
1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.1 Finite sets . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 44
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Metric Spaces 55
2.1 Review of Real Number System and Absolute Value . . . . . 55
2.2 Young, H¿older, andMinkowski Inequalities . . . . . . . . . . 57
2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64
2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4.1 Subspace topology . . . . . . . . . . . . . . . . . . . . 96
2.4.2 Product topology . . . . . . . . . . . . . . . . . . . . . 97
2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101
2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104
2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112
2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3 Complete Metric Spaces 129
3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.1.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . 130
3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131
3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139
3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143
3.4.1 Construction of the set Z . . . . . . . . . . . . . . . . 145
3.4.2 Embedding X in Z . . . . . . . . . . . . . . . . . . . . 147
3.4.3 Proving Z is complete . . . . . . . . . . . . . . . . . . 147
3.4.4 Uniqueness of extension up to isometry . . . . . . . . 148
3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149
3.5.1 Category of sets . . . . . . . . . . . . . . . . . . . . . 149
3.5.2 Baire category theorem . . . . . . . . . . . . . . . . . 151
3.5.3 Applications of Baire category theorem . . . . . . . . 153
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Compact Metric Spaces 161
4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161
4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165
4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169
4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172
4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5 Connected Spaces 183
5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.1.1 Connected subsets . . . . . . . . . . . . . . . . . . . . 185
5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6 Continuity 195
6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195
6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197
6.2.1 Equivalent definitions of continuity and other
characterizations . . . . . . . . . . . . . . . . . . . . . 202
6.2.2 Results on continuity . . . . . . . . . . . . . . . . . . . 210
6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217
6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224
6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229
6.5.1 Path connectedness . . . . . . . . . . . . . . . . . . . . 237
6.6 Equicontinuity and Arzela-Ascoli's Theorem . . . . . . . . . 242
6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245
6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7 Banach Fixed Point Theorem and Its Applications 255
7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255
7.2 Applications of Banach Contraction Principle . . . . . . . . . 260
7.2.1 Root finding problem . . . . . . . . . . . . . . . . . . 260
7.2.2 Solution of systemof linear algebraic equations . . . . 261
7.2.3 Picard existence theorem for differential equations . . 264
7.2.4 Solutions of integral equations . . . . . . . . . . . . . 267
7.2.5 Solutions of initial value and boundary value
problems . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.2.6 Implicit function theorem . . . . . . . . . . . . . . . . 273
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Appendix A 277
Bibliography 281
Index 283
Preface ix
A Note to the Reader xiii
Authors xv
1 Set Theory 1
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The empty set . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Uniqueness of the empty set . . . . . . . . . . . . . . . 9
1.1.4 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Cartesian products . . . . . . . . . . . . . . . . . . . . 9
1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Types of relations . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Equivalence relations . . . . . . . . . . . . . . . . . . . 13
1.2.3 Partition of sets . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Partial order relations . . . . . . . . . . . . . . . . . . 16
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Composition of functions . . . . . . . . . . . . . . . . 24
1.3.2 Inverse of a function . . . . . . . . . . . . . . . . . . . 26
1.3.3 Images of sets under functions . . . . . . . . . . . . . 32
1.3.4 Inverse images of sets under functions . . . . . . . . . 36
1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.1 Finite sets . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 44
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Metric Spaces 55
2.1 Review of Real Number System and Absolute Value . . . . . 55
2.2 Young, H¿older, andMinkowski Inequalities . . . . . . . . . . 57
2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64
2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4.1 Subspace topology . . . . . . . . . . . . . . . . . . . . 96
2.4.2 Product topology . . . . . . . . . . . . . . . . . . . . . 97
2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101
2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104
2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112
2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3 Complete Metric Spaces 129
3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.1.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . 130
3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131
3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139
3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143
3.4.1 Construction of the set Z . . . . . . . . . . . . . . . . 145
3.4.2 Embedding X in Z . . . . . . . . . . . . . . . . . . . . 147
3.4.3 Proving Z is complete . . . . . . . . . . . . . . . . . . 147
3.4.4 Uniqueness of extension up to isometry . . . . . . . . 148
3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149
3.5.1 Category of sets . . . . . . . . . . . . . . . . . . . . . 149
3.5.2 Baire category theorem . . . . . . . . . . . . . . . . . 151
3.5.3 Applications of Baire category theorem . . . . . . . . 153
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Compact Metric Spaces 161
4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161
4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165
4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169
4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172
4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5 Connected Spaces 183
5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.1.1 Connected subsets . . . . . . . . . . . . . . . . . . . . 185
5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6 Continuity 195
6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195
6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197
6.2.1 Equivalent definitions of continuity and other
characterizations . . . . . . . . . . . . . . . . . . . . . 202
6.2.2 Results on continuity . . . . . . . . . . . . . . . . . . . 210
6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217
6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224
6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229
6.5.1 Path connectedness . . . . . . . . . . . . . . . . . . . . 237
6.6 Equicontinuity and Arzela-Ascoli's Theorem . . . . . . . . . 242
6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245
6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7 Banach Fixed Point Theorem and Its Applications 255
7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255
7.2 Applications of Banach Contraction Principle . . . . . . . . . 260
7.2.1 Root finding problem . . . . . . . . . . . . . . . . . . 260
7.2.2 Solution of systemof linear algebraic equations . . . . 261
7.2.3 Picard existence theorem for differential equations . . 264
7.2.4 Solutions of integral equations . . . . . . . . . . . . . 267
7.2.5 Solutions of initial value and boundary value
problems . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.2.6 Implicit function theorem . . . . . . . . . . . . . . . . 273
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Appendix A 277
Bibliography 281
Index 283
Contents
Preface ix
A Note to the Reader xiii
Authors xv
1 Set Theory 1
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The empty set . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Uniqueness of the empty set . . . . . . . . . . . . . . . 9
1.1.4 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Cartesian products . . . . . . . . . . . . . . . . . . . . 9
1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Types of relations . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Equivalence relations . . . . . . . . . . . . . . . . . . . 13
1.2.3 Partition of sets . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Partial order relations . . . . . . . . . . . . . . . . . . 16
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Composition of functions . . . . . . . . . . . . . . . . 24
1.3.2 Inverse of a function . . . . . . . . . . . . . . . . . . . 26
1.3.3 Images of sets under functions . . . . . . . . . . . . . 32
1.3.4 Inverse images of sets under functions . . . . . . . . . 36
1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.1 Finite sets . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 44
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Metric Spaces 55
2.1 Review of Real Number System and Absolute Value . . . . . 55
2.2 Young, H¨older, andMinkowski Inequalities . . . . . . . . . . 57
2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64
2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4.1 Subspace topology . . . . . . . . . . . . . . . . . . . . 96
2.4.2 Product topology . . . . . . . . . . . . . . . . . . . . . 97
2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101
2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104
2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112
2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3 Complete Metric Spaces 129
3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.1.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . 130
3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131
3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139
3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143
3.4.1 Construction of the set Z . . . . . . . . . . . . . . . . 145
3.4.2 Embedding X in Z . . . . . . . . . . . . . . . . . . . . 147
3.4.3 Proving Z is complete . . . . . . . . . . . . . . . . . . 147
3.4.4 Uniqueness of extension up to isometry . . . . . . . . 148
3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149
3.5.1 Category of sets . . . . . . . . . . . . . . . . . . . . . 149
3.5.2 Baire category theorem . . . . . . . . . . . . . . . . . 151
3.5.3 Applications of Baire category theorem . . . . . . . . 153
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Compact Metric Spaces 161
4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161
4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165
4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169
4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172
4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5 Connected Spaces 183
5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.1.1 Connected subsets . . . . . . . . . . . . . . . . . . . . 185
5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6 Continuity 195
6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195
6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197
6.2.1 Equivalent definitions of continuity and other
characterizations . . . . . . . . . . . . . . . . . . . . . 202
6.2.2 Results on continuity . . . . . . . . . . . . . . . . . . . 210
6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217
6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224
6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229
6.5.1 Path connectedness . . . . . . . . . . . . . . . . . . . . 237
6.6 Equicontinuity and Arzela-Ascoli's Theorem . . . . . . . . . 242
6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245
6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7 Banach Fixed Point Theorem and Its Applications 255
7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255
7.2 Applications of Banach Contraction Principle . . . . . . . . . 260
7.2.1 Root finding problem . . . . . . . . . . . . . . . . . . 260
7.2.2 Solution of systemof linear algebraic equations . . . . 261
7.2.3 Picard existence theorem for differential equations . . 264
7.2.4 Solutions of integral equations . . . . . . . . . . . . . 267
7.2.5 Solutions of initial value and boundary value
problems . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.2.6 Implicit function theorem . . . . . . . . . . . . . . . . 273
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Appendix A 277
Bibliography 281
Index 283
Preface ix
A Note to the Reader xiii
Authors xv
1 Set Theory 1
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The empty set . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Uniqueness of the empty set . . . . . . . . . . . . . . . 9
1.1.4 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Cartesian products . . . . . . . . . . . . . . . . . . . . 9
1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Types of relations . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Equivalence relations . . . . . . . . . . . . . . . . . . . 13
1.2.3 Partition of sets . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Partial order relations . . . . . . . . . . . . . . . . . . 16
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Composition of functions . . . . . . . . . . . . . . . . 24
1.3.2 Inverse of a function . . . . . . . . . . . . . . . . . . . 26
1.3.3 Images of sets under functions . . . . . . . . . . . . . 32
1.3.4 Inverse images of sets under functions . . . . . . . . . 36
1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.1 Finite sets . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 44
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Metric Spaces 55
2.1 Review of Real Number System and Absolute Value . . . . . 55
2.2 Young, H¨older, andMinkowski Inequalities . . . . . . . . . . 57
2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64
2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4.1 Subspace topology . . . . . . . . . . . . . . . . . . . . 96
2.4.2 Product topology . . . . . . . . . . . . . . . . . . . . . 97
2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101
2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104
2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112
2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3 Complete Metric Spaces 129
3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.1.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . 130
3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131
3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139
3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143
3.4.1 Construction of the set Z . . . . . . . . . . . . . . . . 145
3.4.2 Embedding X in Z . . . . . . . . . . . . . . . . . . . . 147
3.4.3 Proving Z is complete . . . . . . . . . . . . . . . . . . 147
3.4.4 Uniqueness of extension up to isometry . . . . . . . . 148
3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149
3.5.1 Category of sets . . . . . . . . . . . . . . . . . . . . . 149
3.5.2 Baire category theorem . . . . . . . . . . . . . . . . . 151
3.5.3 Applications of Baire category theorem . . . . . . . . 153
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Compact Metric Spaces 161
4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161
4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165
4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169
4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172
4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5 Connected Spaces 183
5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.1.1 Connected subsets . . . . . . . . . . . . . . . . . . . . 185
5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6 Continuity 195
6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195
6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197
6.2.1 Equivalent definitions of continuity and other
characterizations . . . . . . . . . . . . . . . . . . . . . 202
6.2.2 Results on continuity . . . . . . . . . . . . . . . . . . . 210
6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217
6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224
6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229
6.5.1 Path connectedness . . . . . . . . . . . . . . . . . . . . 237
6.6 Equicontinuity and Arzela-Ascoli's Theorem . . . . . . . . . 242
6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245
6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7 Banach Fixed Point Theorem and Its Applications 255
7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255
7.2 Applications of Banach Contraction Principle . . . . . . . . . 260
7.2.1 Root finding problem . . . . . . . . . . . . . . . . . . 260
7.2.2 Solution of systemof linear algebraic equations . . . . 261
7.2.3 Picard existence theorem for differential equations . . 264
7.2.4 Solutions of integral equations . . . . . . . . . . . . . 267
7.2.5 Solutions of initial value and boundary value
problems . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.2.6 Implicit function theorem . . . . . . . . . . . . . . . . 273
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Appendix A 277
Bibliography 281
Index 283
Contents
Preface ix
A Note to the Reader xiii
Authors xv
1 Set Theory 1
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The empty set . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Uniqueness of the empty set . . . . . . . . . . . . . . . 9
1.1.4 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Cartesian products . . . . . . . . . . . . . . . . . . . . 9
1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Types of relations . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Equivalence relations . . . . . . . . . . . . . . . . . . . 13
1.2.3 Partition of sets . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Partial order relations . . . . . . . . . . . . . . . . . . 16
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Composition of functions . . . . . . . . . . . . . . . . 24
1.3.2 Inverse of a function . . . . . . . . . . . . . . . . . . . 26
1.3.3 Images of sets under functions . . . . . . . . . . . . . 32
1.3.4 Inverse images of sets under functions . . . . . . . . . 36
1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.1 Finite sets . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 44
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Metric Spaces 55
2.1 Review of Real Number System and Absolute Value . . . . . 55
2.2 Young, H¿older, andMinkowski Inequalities . . . . . . . . . . 57
2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64
2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4.1 Subspace topology . . . . . . . . . . . . . . . . . . . . 96
2.4.2 Product topology . . . . . . . . . . . . . . . . . . . . . 97
2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101
2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104
2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112
2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3 Complete Metric Spaces 129
3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.1.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . 130
3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131
3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139
3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143
3.4.1 Construction of the set Z . . . . . . . . . . . . . . . . 145
3.4.2 Embedding X in Z . . . . . . . . . . . . . . . . . . . . 147
3.4.3 Proving Z is complete . . . . . . . . . . . . . . . . . . 147
3.4.4 Uniqueness of extension up to isometry . . . . . . . . 148
3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149
3.5.1 Category of sets . . . . . . . . . . . . . . . . . . . . . 149
3.5.2 Baire category theorem . . . . . . . . . . . . . . . . . 151
3.5.3 Applications of Baire category theorem . . . . . . . . 153
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Compact Metric Spaces 161
4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161
4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165
4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169
4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172
4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5 Connected Spaces 183
5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.1.1 Connected subsets . . . . . . . . . . . . . . . . . . . . 185
5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6 Continuity 195
6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195
6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197
6.2.1 Equivalent definitions of continuity and other
characterizations . . . . . . . . . . . . . . . . . . . . . 202
6.2.2 Results on continuity . . . . . . . . . . . . . . . . . . . 210
6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217
6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224
6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229
6.5.1 Path connectedness . . . . . . . . . . . . . . . . . . . . 237
6.6 Equicontinuity and Arzela-Ascoli's Theorem . . . . . . . . . 242
6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245
6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7 Banach Fixed Point Theorem and Its Applications 255
7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255
7.2 Applications of Banach Contraction Principle . . . . . . . . . 260
7.2.1 Root finding problem . . . . . . . . . . . . . . . . . . 260
7.2.2 Solution of systemof linear algebraic equations . . . . 261
7.2.3 Picard existence theorem for differential equations . . 264
7.2.4 Solutions of integral equations . . . . . . . . . . . . . 267
7.2.5 Solutions of initial value and boundary value
problems . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.2.6 Implicit function theorem . . . . . . . . . . . . . . . . 273
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Appendix A 277
Bibliography 281
Index 283
Preface ix
A Note to the Reader xiii
Authors xv
1 Set Theory 1
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The empty set . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Uniqueness of the empty set . . . . . . . . . . . . . . . 9
1.1.4 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Cartesian products . . . . . . . . . . . . . . . . . . . . 9
1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Types of relations . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Equivalence relations . . . . . . . . . . . . . . . . . . . 13
1.2.3 Partition of sets . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Partial order relations . . . . . . . . . . . . . . . . . . 16
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Composition of functions . . . . . . . . . . . . . . . . 24
1.3.2 Inverse of a function . . . . . . . . . . . . . . . . . . . 26
1.3.3 Images of sets under functions . . . . . . . . . . . . . 32
1.3.4 Inverse images of sets under functions . . . . . . . . . 36
1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.1 Finite sets . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 44
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Metric Spaces 55
2.1 Review of Real Number System and Absolute Value . . . . . 55
2.2 Young, H¿older, andMinkowski Inequalities . . . . . . . . . . 57
2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64
2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4.1 Subspace topology . . . . . . . . . . . . . . . . . . . . 96
2.4.2 Product topology . . . . . . . . . . . . . . . . . . . . . 97
2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101
2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104
2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112
2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3 Complete Metric Spaces 129
3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.1.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . 130
3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131
3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139
3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143
3.4.1 Construction of the set Z . . . . . . . . . . . . . . . . 145
3.4.2 Embedding X in Z . . . . . . . . . . . . . . . . . . . . 147
3.4.3 Proving Z is complete . . . . . . . . . . . . . . . . . . 147
3.4.4 Uniqueness of extension up to isometry . . . . . . . . 148
3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149
3.5.1 Category of sets . . . . . . . . . . . . . . . . . . . . . 149
3.5.2 Baire category theorem . . . . . . . . . . . . . . . . . 151
3.5.3 Applications of Baire category theorem . . . . . . . . 153
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Compact Metric Spaces 161
4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161
4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165
4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169
4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172
4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5 Connected Spaces 183
5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.1.1 Connected subsets . . . . . . . . . . . . . . . . . . . . 185
5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6 Continuity 195
6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195
6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197
6.2.1 Equivalent definitions of continuity and other
characterizations . . . . . . . . . . . . . . . . . . . . . 202
6.2.2 Results on continuity . . . . . . . . . . . . . . . . . . . 210
6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217
6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224
6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229
6.5.1 Path connectedness . . . . . . . . . . . . . . . . . . . . 237
6.6 Equicontinuity and Arzela-Ascoli's Theorem . . . . . . . . . 242
6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245
6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7 Banach Fixed Point Theorem and Its Applications 255
7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255
7.2 Applications of Banach Contraction Principle . . . . . . . . . 260
7.2.1 Root finding problem . . . . . . . . . . . . . . . . . . 260
7.2.2 Solution of systemof linear algebraic equations . . . . 261
7.2.3 Picard existence theorem for differential equations . . 264
7.2.4 Solutions of integral equations . . . . . . . . . . . . . 267
7.2.5 Solutions of initial value and boundary value
problems . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.2.6 Implicit function theorem . . . . . . . . . . . . . . . . 273
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Appendix A 277
Bibliography 281
Index 283
Contents
Preface ix
A Note to the Reader xiii
Authors xv
1 Set Theory 1
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The empty set . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Uniqueness of the empty set . . . . . . . . . . . . . . . 9
1.1.4 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Cartesian products . . . . . . . . . . . . . . . . . . . . 9
1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Types of relations . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Equivalence relations . . . . . . . . . . . . . . . . . . . 13
1.2.3 Partition of sets . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Partial order relations . . . . . . . . . . . . . . . . . . 16
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Composition of functions . . . . . . . . . . . . . . . . 24
1.3.2 Inverse of a function . . . . . . . . . . . . . . . . . . . 26
1.3.3 Images of sets under functions . . . . . . . . . . . . . 32
1.3.4 Inverse images of sets under functions . . . . . . . . . 36
1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.1 Finite sets . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 44
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Metric Spaces 55
2.1 Review of Real Number System and Absolute Value . . . . . 55
2.2 Young, H¨older, andMinkowski Inequalities . . . . . . . . . . 57
2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64
2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4.1 Subspace topology . . . . . . . . . . . . . . . . . . . . 96
2.4.2 Product topology . . . . . . . . . . . . . . . . . . . . . 97
2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101
2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104
2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112
2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3 Complete Metric Spaces 129
3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.1.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . 130
3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131
3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139
3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143
3.4.1 Construction of the set Z . . . . . . . . . . . . . . . . 145
3.4.2 Embedding X in Z . . . . . . . . . . . . . . . . . . . . 147
3.4.3 Proving Z is complete . . . . . . . . . . . . . . . . . . 147
3.4.4 Uniqueness of extension up to isometry . . . . . . . . 148
3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149
3.5.1 Category of sets . . . . . . . . . . . . . . . . . . . . . 149
3.5.2 Baire category theorem . . . . . . . . . . . . . . . . . 151
3.5.3 Applications of Baire category theorem . . . . . . . . 153
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Compact Metric Spaces 161
4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161
4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165
4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169
4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172
4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5 Connected Spaces 183
5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.1.1 Connected subsets . . . . . . . . . . . . . . . . . . . . 185
5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6 Continuity 195
6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195
6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197
6.2.1 Equivalent definitions of continuity and other
characterizations . . . . . . . . . . . . . . . . . . . . . 202
6.2.2 Results on continuity . . . . . . . . . . . . . . . . . . . 210
6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217
6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224
6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229
6.5.1 Path connectedness . . . . . . . . . . . . . . . . . . . . 237
6.6 Equicontinuity and Arzela-Ascoli's Theorem . . . . . . . . . 242
6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245
6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7 Banach Fixed Point Theorem and Its Applications 255
7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255
7.2 Applications of Banach Contraction Principle . . . . . . . . . 260
7.2.1 Root finding problem . . . . . . . . . . . . . . . . . . 260
7.2.2 Solution of systemof linear algebraic equations . . . . 261
7.2.3 Picard existence theorem for differential equations . . 264
7.2.4 Solutions of integral equations . . . . . . . . . . . . . 267
7.2.5 Solutions of initial value and boundary value
problems . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.2.6 Implicit function theorem . . . . . . . . . . . . . . . . 273
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Appendix A 277
Bibliography 281
Index 283
Preface ix
A Note to the Reader xiii
Authors xv
1 Set Theory 1
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The empty set . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Uniqueness of the empty set . . . . . . . . . . . . . . . 9
1.1.4 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Cartesian products . . . . . . . . . . . . . . . . . . . . 9
1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Types of relations . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Equivalence relations . . . . . . . . . . . . . . . . . . . 13
1.2.3 Partition of sets . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Partial order relations . . . . . . . . . . . . . . . . . . 16
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Composition of functions . . . . . . . . . . . . . . . . 24
1.3.2 Inverse of a function . . . . . . . . . . . . . . . . . . . 26
1.3.3 Images of sets under functions . . . . . . . . . . . . . 32
1.3.4 Inverse images of sets under functions . . . . . . . . . 36
1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.1 Finite sets . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 44
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Metric Spaces 55
2.1 Review of Real Number System and Absolute Value . . . . . 55
2.2 Young, H¨older, andMinkowski Inequalities . . . . . . . . . . 57
2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64
2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4.1 Subspace topology . . . . . . . . . . . . . . . . . . . . 96
2.4.2 Product topology . . . . . . . . . . . . . . . . . . . . . 97
2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101
2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104
2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112
2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3 Complete Metric Spaces 129
3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.1.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . 130
3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131
3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139
3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143
3.4.1 Construction of the set Z . . . . . . . . . . . . . . . . 145
3.4.2 Embedding X in Z . . . . . . . . . . . . . . . . . . . . 147
3.4.3 Proving Z is complete . . . . . . . . . . . . . . . . . . 147
3.4.4 Uniqueness of extension up to isometry . . . . . . . . 148
3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149
3.5.1 Category of sets . . . . . . . . . . . . . . . . . . . . . 149
3.5.2 Baire category theorem . . . . . . . . . . . . . . . . . 151
3.5.3 Applications of Baire category theorem . . . . . . . . 153
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Compact Metric Spaces 161
4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161
4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165
4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169
4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172
4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5 Connected Spaces 183
5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.1.1 Connected subsets . . . . . . . . . . . . . . . . . . . . 185
5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6 Continuity 195
6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195
6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197
6.2.1 Equivalent definitions of continuity and other
characterizations . . . . . . . . . . . . . . . . . . . . . 202
6.2.2 Results on continuity . . . . . . . . . . . . . . . . . . . 210
6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217
6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224
6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229
6.5.1 Path connectedness . . . . . . . . . . . . . . . . . . . . 237
6.6 Equicontinuity and Arzela-Ascoli's Theorem . . . . . . . . . 242
6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245
6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7 Banach Fixed Point Theorem and Its Applications 255
7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255
7.2 Applications of Banach Contraction Principle . . . . . . . . . 260
7.2.1 Root finding problem . . . . . . . . . . . . . . . . . . 260
7.2.2 Solution of systemof linear algebraic equations . . . . 261
7.2.3 Picard existence theorem for differential equations . . 264
7.2.4 Solutions of integral equations . . . . . . . . . . . . . 267
7.2.5 Solutions of initial value and boundary value
problems . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.2.6 Implicit function theorem . . . . . . . . . . . . . . . . 273
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Appendix A 277
Bibliography 281
Index 283