40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
20 °P sammeln
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
20 °P sammeln
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
20 °P sammeln
Jetzt verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
20 °P sammeln
  • Format: PDF

This textbook presents a unified approach to compact and noncompact Riemann surfaces from the point of view of the L² -method, a powerful technique used in the theory of several complex variables. The work features a simple construction of a strictly subharmonic exhaustion function and a related construction of a positive-curvature Hermitian metric in a holomorphic line bundle, topics which serve as starting points for proofs of standard results such as the Mittag-Leffler, Weierstrass, and Runge theorems; the Riemann-Roch theorem; the Serre duality and Hodge decomposition theorems; and the…mehr

Produktbeschreibung
This textbook presents a unified approach to compact and noncompact Riemann surfaces from the point of view of the L² -method, a powerful technique used in the theory of several complex variables. The work features a simple construction of a strictly subharmonic exhaustion function and a related construction of a positive-curvature Hermitian metric in a holomorphic line bundle, topics which serve as starting points for proofs of standard results such as the Mittag-Leffler, Weierstrass, and Runge theorems; the Riemann-Roch theorem; the Serre duality and Hodge decomposition theorems; and the uniformization theorem. The book also contains treatments of other facts concerning the holomorphic, smooth, and topological structure of a Riemann surface, such as the biholomorphic classification of Riemann surfaces, the embedding theorems, the integrability of almost complex structures, the Schönflies theorem (and the Jordan curve theorem), and the existence of smooth structures on second countable surfaces.

Although some previous experience with complex analysis, Hilbert space theory, and analysis on manifolds would be helpful, the only prerequisite for this book is a working knowledge of point-set topology and elementary measure theory. The work includes numerous exercises-many of which lead to further development of the theory-and presents (with proofs) streamlined treatments of background topics from analysis and topology on manifolds in easily-accessible reference chapters, making it ideal for a one- or two-semester graduate course.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Rezensionen
From the reviews:

"The present book gives a solid introduction to the theory of both compact and non-compact Riemann surfaces. While modern introductions often take the view point of algebraic geometry, the present book tries to also cover the analytical aspects. ... The book is well written and constitutes a nice contribution to the existing literature on this topic." (G. Teschl, Internationale Mathematische Nachrichten, Issue 225, 2014)

"This book takes the point of view that Riemann surface theory lies at the root of much of modern analysis, and ... illustrate some of the interactions of analysis with geometry and topology. ... While much of the book is intended for students at the second-year graduate level, Chapters 1 and 2 and Section 5.2 (along with the required background material) could serve as the basis for the complex analytic analysis component of a year-long first-year graduate-level course on real and complex analysis." (V. V. Chueshev, Zentralblatt MATH, Vol. 1237, 2012)