285,95 €
285,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
143 °P sammeln
285,95 €
285,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
143 °P sammeln
Als Download kaufen
285,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
143 °P sammeln
Jetzt verschenken
285,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
143 °P sammeln
  • Format: PDF

Frontmatter -- CONTENTS -- List of basic notations and assumptions -- Preface and some historical remarks -- Chapter 1. Introduction to the theory of sample matrices of fixed dimension -- Chapter 2. Canonical equations -- Chapter 3. The First Law for the eigenvalues and eigenvectors of random symmetric matrices -- Chapter 4. The Second Law for the singular values and eigenvectors of random matrices. Inequalities for the spectral radius of large random matrices -- Chapter 5. The Third Law for the eigenvalues and eigenvectors of empirical covariance matrices -- Chapter 6. The first proof of the…mehr

Produktbeschreibung
Frontmatter -- CONTENTS -- List of basic notations and assumptions -- Preface and some historical remarks -- Chapter 1. Introduction to the theory of sample matrices of fixed dimension -- Chapter 2. Canonical equations -- Chapter 3. The First Law for the eigenvalues and eigenvectors of random symmetric matrices -- Chapter 4. The Second Law for the singular values and eigenvectors of random matrices. Inequalities for the spectral radius of large random matrices -- Chapter 5. The Third Law for the eigenvalues and eigenvectors of empirical covariance matrices -- Chapter 6. The first proof of the Strong Circular Law -- Chapter 7. Strong Law for normalized spectral functions of nonselfadjoint random matrices with independent row vectors and simple rigorous proof of the Strong Circular Law -- Chapter 8. Rigorous proof of the Strong Elliptic Law -- Chapter 9. The Circular and Uniform Laws for eigenvalues of random nonsymmetric complex matrices with independent entries -- Chapter 10. Strong V-Law for eigenvalues of nonsymmetric random matrices -- Chapter 11. Convergence rate of the expected spectral functions of symmetric random matrices is equal to 0(n-1/2) -- Chapter 12. Convergence rate of expected spectral functions of the sample covariance matrix ?m¿(n) is equal to 0(n-1/2) under the condition m¿n-1?c<1 -- Chapter 13. The First Spacing Law for random symmetric matrices -- Chapter 14. Ten years of General Statistical Analysis (The main G-estimators of General Statistical Analysis) -- References -- Index

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.