56,95 €
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
28 °P sammeln
56,95 €
56,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
28 °P sammeln
Als Download kaufen
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
28 °P sammeln
Jetzt verschenken
56,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
28 °P sammeln
  • Format: ePub

As Bayesian techniques become more common across a variety of fields, it becomes important for experts in those fields to understand those methods. An Introductory Handbook of Bayesian Thinking brings Bayesian thinking and methods to a wide audience beyond the mathematical sciences. Appropriate for students with some background in calculus and introductory statistics, particularly for nonstatisticians with a sufficient mathematical background, the text provides a gentle introduction to Bayesian ideas with a wide array of supporting examples from a variety of fields. Utilizes real datasets to…mehr

Produktbeschreibung
As Bayesian techniques become more common across a variety of fields, it becomes important for experts in those fields to understand those methods. An Introductory Handbook of Bayesian Thinking brings Bayesian thinking and methods to a wide audience beyond the mathematical sciences. Appropriate for students with some background in calculus and introductory statistics, particularly for nonstatisticians with a sufficient mathematical background, the text provides a gentle introduction to Bayesian ideas with a wide array of supporting examples from a variety of fields.
  • Utilizes real datasets to illustrate Bayesian models and their results
  • Guides readers on coding Bayesian models using the statistical software R, including a helpful introduction and supporting online resource
  • Appropriate for an undergraduate statistics course, as well as for non-statisticians with sufficient mathematical background (integral and differential Calculus and an introductory Statistics course)
  • Covers any more advanced topics which readers may not be familiar with-such as the basic idea of vectors and matrices-as much as needed in order to foster understanding of core concepts

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Stephen Loftus is an Analyst in Research & Development for the Atlanta Braves. Prior to this, he held academic positions at Randolph-Macon College and Sweet Briar College. In his experience in academia and industry, Dr. Loftus has spent a great deal of time studying and developing Bayesian models for a variety of projects. These highly collaborative projects range from analysis in baseball to studies in numerical ecology. In developing these models, he found himself, on many occasions, needing to explain not only the decisions made in making these models, but also the rationale behind the Bayesian philosophy of statistics to individuals with diverse mathematical backgrounds.