21,91 €
21,91 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
21,91 €
21,91 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
21,91 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
21,91 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Um die Kosten zur Deckung der Nachfrage nach leitungsgebundenen Energieträgern zu minimieren, wird in Energieversorgungs- und Handelsunternehmen die Energiebereitstellung detailliert geplant. Durch die Liberalisierung der Energiemärkte und die hieraus steigende Anzahl an Marktakteuren und Transaktionen ist es nun erforderlich, für Vertriebs- und Handelsunternehmen sowie für die Stromhandelsaufgaben des Netzbetreibers getrennte Prognosen mit zum Teil völlig unterschiedlichen Anforderungen an Methoden und Systemen zu erstellen. Diese Planungsaufgabe wird künftig zunehmend wichtiger und ist für…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 1.29MB
  • FamilySharing(5)
Produktbeschreibung
Um die Kosten zur Deckung der Nachfrage nach leitungsgebundenen Energieträgern zu minimieren, wird in Energieversorgungs- und Handelsunternehmen die Energiebereitstellung detailliert geplant. Durch die Liberalisierung der Energiemärkte und die hieraus steigende Anzahl an Marktakteuren und Transaktionen ist es nun erforderlich, für Vertriebs- und Handelsunternehmen sowie für die Stromhandelsaufgaben des Netzbetreibers getrennte Prognosen mit zum Teil völlig unterschiedlichen Anforderungen an Methoden und Systemen zu erstellen. Diese Planungsaufgabe wird künftig zunehmend wichtiger und ist für den wirtschaftlichen Erfolg der Unternehmen maßgeblich. In der betrieblichen Praxis wird eine Vielzahl verschiedener Ansätze und Verfahren zur Lastprognose eingesetzt. Dabei ist derzeit das Verfahren der multiplen Regression am weitesten verbreitet. Im Rahmen dieser Arbeit wurden auf der Basis von Lastgangdaten unterschiedlicher Versorgungskollektive Prognosemodelle erarbeitet. Es erfolgten zunächst statistische Untersuchungen zwischen den Lastgangdaten und den zugehörigen exogenen Größen. Mit den hieraus gewonnenen Erkenntnissen wurde die Entwicklung von Lastprognosemodellen mit Methoden der klassischen Zeitreihenanalysen, den Methoden der stochastischen Prozesse sowie einer Kombination von deterministischen und stochastischen Ansätzen durchgeführt. Weiterführend wurde die Technik der neuronalen Netze zur Lastprognose eingesetzt, da diese eine hohe Lernfähigkeit aufweisen und auch für andere Anwendungsgebiete leicht trainierbar sind. Die Art und Topologie sowie Anzahl der neuronalen Netze wurde in Abhängigkeit der Prognosezuverlässigkeit optimiert und anhand von Fallstudien erprobt.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.