Nicht lieferbar
Analysis and Characterization of GaAs MOSFET with High-K Dielectric Material (eBook, PDF) - Pawar, Krupal; Patil, Vasudha
Schade – dieser Artikel ist leider ausverkauft. Sobald wir wissen, ob und wann der Artikel wieder verfügbar ist, informieren wir Sie an dieser Stelle.
  • Format: PDF

Scientific Essay from the year 2015 in the subject Engineering - Communication Technology, , course: VLSI Technology, language: English, abstract: Analysis and characterization of the GaAs MOSFET with High-k gate dielectric material and also do the small signal analysis and noise analysis using TCAD tool. In present research work GaAs is employed as substrate material. Band gap of GaAs is about 1.43eV. Lattice constant for GaAS is 5.65A. Substrate doping is 1x10^16 cm-3. HFO2 gate dielectric deposited on GaAs(100) substrate. HFO2 film is 20nm thick. Dielectric constant of HFO2 is order of…mehr

Produktbeschreibung
Scientific Essay from the year 2015 in the subject Engineering - Communication Technology, , course: VLSI Technology, language: English, abstract: Analysis and characterization of the GaAs MOSFET with High-k gate dielectric material and also do the small signal analysis and noise analysis using TCAD tool. In present research work GaAs is employed as substrate material. Band gap of GaAs is about 1.43eV. Lattice constant for GaAS is 5.65A. Substrate doping is 1x10^16 cm-3. HFO2 gate dielectric deposited on GaAs(100) substrate. HFO2 film is 20nm thick. Dielectric constant of HFO2 is order of 20-25. Permittivity (F cm^-2) is 20€0. Band gap (eV) is 4.5-6.0.HFO2 grown by Atomic Layer Deposition on GaAs. The transition metal Au is proposed dopant for GaAs. Source/Drain junction depth is 20nm. Doping levels of drain source are 1e20. Gold is used for gate metal. A working GaAs device is simulated and out performs the Si core device due to its increased mobility. It also decreases leakage current. Solve the problem of Fermi level pinning. So GaAs MOSFET is always better than Si MOSFET.