Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks (eBook, PDF)
Alle Infos zum eBook verschenken
Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks deals with flows in pipes and channel networks from the standpoints of hydraulics and modelling techniques and methods. These engineering problems occur in the course of the design and construction of hydroenergy plants, water-supply and other systems. In this book, the author presents his experience in solving these problems from the early 1970s to the present day. During this period new methods of solving hydraulic problems have evolved, due to the development of computers and numerical methods. This book is accompanied…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 15.45MB
- Vinko JovicAnalysis and Modelling of Non-Steady Flow in Pipe and Channel Networks (eBook, ePUB)125,99 €
- Noah D. ManringHydraulic Control Systems (eBook, PDF)111,99 €
- Andrea VaccaHydraulic Fluid Power (eBook, PDF)108,99 €
- Feng-Chen LiTurbulent Drag Reduction by Surfactant Additives (eBook, PDF)156,99 €
- Keith A. WoodburyInverse Heat Conduction (eBook, PDF)111,99 €
- Sayed M. MetwalliMachine Design with CAD and Optimization (eBook, PDF)109,99 €
- Christina G. GeorgantopoulouFluid Mechanics in Channel, Pipe and Aerodynamic Design Geometries 1 (eBook, PDF)139,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Jossey-Bass
- Seitenzahl: 544
- Erscheinungstermin: 25. Februar 2013
- Englisch
- ISBN-13: 9781118536872
- Artikelnr.: 37757215
- Verlag: Jossey-Bass
- Seitenzahl: 544
- Erscheinungstermin: 25. Februar 2013
- Englisch
- ISBN-13: 9781118536872
- Artikelnr.: 37757215
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
0 151 4.3.2 Sudden Pipe Filling, Velocity Change 0
V0 154 4.3.3 Sudden Filling of Blind Pipe, Velocity Change 0
V0 156 4.3.4 Sudden valve opening 159 4.3.5 Sudden forced inflow 161 4.4 Under-pressure and column separation 164 4.5 Influence of extreme friction 167 4.6 Gradual velocity changes 171 4.6.1 Gradual valve closing 171 4.6.2 Linear flow arrest 174 4.7 Influence of outflow area change 176 4.7.1 Graphic solution 178 4.7.2 Modified graphical procedure 179 4.8 Real closure laws 180 4.9 Water hammer propagation through branches 181 4.10 Complex pipelines 183 4.11 Wave kinematics 183 4.11.1 Wave functions 183 4.11.2 General solution 187 Reference 187 Further reading 187 5 Equations of Non-steady Flow in Pipes 189 5.1 Equation of state 189 5.1.1 p,T phase diagram 189 5.1.2 p,V phase diagram 190 5.2 Flow of an ideal fluid in a streamtube 195 5.2.1 Flow kinematics along a streamtube 195 5.2.2 Flow dynamics along a streamtube 198 5.3 The real flow velocity profile 202 5.3.1 Reynolds number, flow regimes 202 5.3.2 Velocity profile in the developed boundary layer 203 5.3.3 Calculations at the cross-section 204 5.4 Control volume 205 5.5 Mass conservation, equation of continuity 206 5.5.1 Integral form 206 5.5.2 Differential form 207 5.5.3 Elastic liquid 207 5.5.4 Compressible liquid 209 5.6 Energy conservation law, the dynamic equation 209 5.6.1 Total energy of the control volume 209 5.6.2 Rate of change of internal energy 210 5.6.3 Rate of change of potential energy 210 5.6.4 Rate of change of kinetic energy 210 5.6.5 Power of normal forces 211 5.6.6 Power of resistance forces 212 5.6.7 Dynamic equation 212 5.6.8 Flow resistances, the dynamic equation discussion 213 5.7 Flow models 215 5.7.1 Steady flow 215 5.7.2 Non-steady flow 217 5.8 Characteristic equations 220 5.8.1 Elastic liquid 220 5.8.2 Compressible fluid 223 5.9 Analytical solutions 225 5.9.1 Linearization of equations - wave equations 225 5.9.2 Riemann general solution 226 5.9.3 Some analytical solutions of water hammer 227 Reference 229 Further reading 229 6 Modelling of Non-steady Flow of Compressible Liquid in Pipes 231 6.1 Solution by the method of characteristics 231 6.1.1 Characteristic equations 231 6.1.2 Integration of characteristic equations, wave functions 232 6.1.3 Integration of Characteristic Equations, Variables H, V 234 6.1.4 The water hammer is the pipe with no resistance 235 6.1.5 Water hammers in pipes with friction 243 6.2 Subroutine UnsteadyPipeMtx 251 6.2.1 Subroutine FemUnsteadyPipeMtx 252 6.2.2 Subroutine ChtxUnsteadyPipeMtx 255 6.3 Comparison tests 261 6.3.1 Test example 261 6.3.2 Conclusion 263 Further reading 264 7 Valves and Joints 265 7.1 Valves 265 7.1.1 Local energy head losses at valves 265 7.1.2 Valve status 267 7.1.3 Steady flow modelling 267 7.1.4 Non-steady flow modelling 269 7.2 Joints 279 7.2.1 Energy head losses at joints 279 7.2.2 Steady flow modelling 279 7.2.3 Non-steady flow modelling 282 7.3 Test example 288 Reference 290 Further reading 290 8 Pumping Units 291 8.1 Introduction 291 8.2 Euler's equations of turbo engines 291 8.3 Normal characteristics of the pump 295 8.4 Dimensionless pump characteristics 301 8.5 Pump specific speed 303 8.6 Complete characteristics of turbo engine 305 8.6.1 Normal and abnormal operation 305 8.6.2 Presentation of turbo engine characteristics depending on the direction of rotation 305 8.6.3 Knapp circle diagram 305 8.6.4 Suter curves 308 8.7 Drive engines 310 8.7.1 Asynchronous or induction motor 310 8.7.2 Adjustment of rotational speed by frequency variation 311 8.7.3 Pumping unit operation 312 8.8 Numerical model of pumping units 314 8.8.1 Normal pump operation 314 8.8.2 Reconstruction of complete characteristics from normal characteristics 318 8.8.3 Reconstruction of a hypothetic pumping unit 321 8.8.4 Reconstruction of the electric motor torque curve 322 8.9 Pumping element matrices 323 8.9.1 Steady flow modelling 323 8.9.2 Unsteady flow modelling 327 8.10 Examples of transient operation stage modelling 333 8.10.1 Test example (A) 334 8.10.2 Test example (B) 336 8.10.3 Test example (C) 339 8.10.4 Test example (D) 341 8.11 Analysis of operation and types of protection against pressure excesses 345 8.11.1 Normal and accidental operation 345 8.11.2 Layout 345 8.11.3 Supply pipeline, suction basin 346 8.11.4 Pressure pipeline and pumping station 348 8.11.5 Booster station 350 8.12 Something about protection of sewage pressure pipelines 353 8.13 Pumping units in a pressurized system with no tank 355 8.13.1 Introduction 355 8.13.2 Pumping unit regulation by pressure switches 355 8.13.3 Hydrophor regulation 358 8.13.4 Pumping unit regulation by variable rotational speed 360 Reference 362 Further reading 362 9 Open Channel Flow 363 9.1 Introduction 363 9.2 Steady flow in a mildly sloping channel 363 9.3 Uniform flow in a mildly sloping channel 365 9.3.1 Uniform flow velocity in open channel 365 9.3.2 Conveyance, discharge curve 368 9.3.3 Specific energy in a cross-section: Froude number 372 9.3.4 Uniform flow programming solution 377 9.4 Non-uniform gradually varied flow 378 9.4.1 Non-uniform flow characteristics 378 9.4.2 Water level differential equation 380 9.4.3 Water level shapes in prismatic channels 382 9.4.4 Transitions between supercritical and subcritical flow, hydraulic jump 383 9.4.5 Water level shapes in a non-prismatic channel 391 9.4.6 Gradually varied flow programming solutions 395 9.5 Sudden changes in cross-sections 398 9.6 Steady flow modelling 401 9.6.1 Channel stretch discretization 401 9.6.2 Initialization of channel stretches 402 9.6.3 Subroutine SubCriticalSteadyChannelMtx 404 9.6.4 Subroutine SuperCriticalSteadyChannelMtx 406 9.7 Wave kinematics in channels 407 9.7.1 Propagation of positive and negative waves 407 9.7.2 Velocity of the wave of finite amplitude 407 9.7.3 Elementary wave celerity 409 9.7.4 Shape of positive and negative waves 411 9.7.5 Standing wave - hydraulic jump 412 9.7.6 Wave propagation through transitional stretches 413 9.8 Equations of non-steady flow in open channels 414 9.8.1 Continuity equation 414 9.8.2 Dynamic equation 416 9.8.3 Law of momentum conservation 417 9.9 Equation of characteristics 422 9.9.1 Transformation of non-steady flow equations 422 9.9.2 Procedure of transformation into characteristics 423 9.10 Initial and boundary conditions 424 9.11 Non-steady flow modelling 425 9.11.1 Integration along characteristics 425 9.11.2 Matrix and vector of the channel finite element 427 9.11.3 Test examples 431 References 434 Further reading 435 10 Numerical Modelling in Karst 437 10.1 Underground karst flows 437 10.1.1 Introduction 437 10.1.2 Investigation works in karst catchment 437 10.1.3 The main development forms of karst phenomena in the Dinaric area 438 10.1.4 The size of the catchment 443 10.2 Conveyance of the karst channel system 446 10.2.1 Transformation of rainfall into spring hydrographs 446 10.2.2 Linear filtration law 447 10.2.3 Turbulent filtration law 449 10.2.4 Complex flow, channel flow, and filtration 451 10.3 Modelling of karst channel flows 453 10.3.1 Karst channel finite elements 453 10.3.2 Subroutine SteadyKanalMtx 454 10.3.3 Subroutine UnsteadyKanalMtx 456 10.3.4 Tests 458 10.4 Method of catchment discretization 463 10.4.1 Discretization of karst catchment channel system without diffuse flow 463 10.4.2 Equation of the underground accumulation of a karst sub-catchment 466 10.5 Rainfall transformation 468 10.5.1 Uniform input hydrograph 468 10.5.2 Rainfall at the catchment 473 10.6 Discretization of karst catchment with diffuse and channel flow 474 References 477 Further reading 477 11 Convective-dispersive Flows 479 11.1 Introduction 479 11.2 A reminder of continuum mechanics 479 11.3 Hydrodynamic dispersion 483 11.4 Equations of convective-dispersive heat transfer 485 11.5 Exact solutions of convective-dispersive equation 487 11.5.1 Convective equation 487 11.5.2 Convective-dispersive equation 488 11.5.3 Transformation of the convective-dispersive equation 490 11.6 Numerical modelling in a hydraulic network 490 11.6.1 The selection of solution basis, shape functions 490 11.6.2 Elemental equations: equation integration on the finite element 492 11.6.3 Nodal equations 495 11.6.4 Boundary conditions 495 11.6.5 Matrix and vector of finite element 496 11.6.6 Numeric solution test 497 11.6.7 Heat exchange of water table 499 11.6.8 Equilibrium temperature and linearization 500 11.6.9 Temperature disturbance caused by artificial sources 501 References 503 Further reading 503 12 Hydraulic Vibrations in Networks 505 12.1 Introduction 505 12.2 Vibration equations of a pipe element 506 12.3 Harmonic solution for the pipe element 508 12.4 Harmonic solutions in the network 509 12.5 Vibration source modelling 512 12.6 Hints to implementation in SimpipCore 512 12.7 Illustrative examples 515 Reference 518 Further reading 518 Index 519
0 151 4.3.2 Sudden Pipe Filling, Velocity Change 0
V0 154 4.3.3 Sudden Filling of Blind Pipe, Velocity Change 0
V0 156 4.3.4 Sudden valve opening 159 4.3.5 Sudden forced inflow 161 4.4 Under-pressure and column separation 164 4.5 Influence of extreme friction 167 4.6 Gradual velocity changes 171 4.6.1 Gradual valve closing 171 4.6.2 Linear flow arrest 174 4.7 Influence of outflow area change 176 4.7.1 Graphic solution 178 4.7.2 Modified graphical procedure 179 4.8 Real closure laws 180 4.9 Water hammer propagation through branches 181 4.10 Complex pipelines 183 4.11 Wave kinematics 183 4.11.1 Wave functions 183 4.11.2 General solution 187 Reference 187 Further reading 187 5 Equations of Non-steady Flow in Pipes 189 5.1 Equation of state 189 5.1.1 p,T phase diagram 189 5.1.2 p,V phase diagram 190 5.2 Flow of an ideal fluid in a streamtube 195 5.2.1 Flow kinematics along a streamtube 195 5.2.2 Flow dynamics along a streamtube 198 5.3 The real flow velocity profile 202 5.3.1 Reynolds number, flow regimes 202 5.3.2 Velocity profile in the developed boundary layer 203 5.3.3 Calculations at the cross-section 204 5.4 Control volume 205 5.5 Mass conservation, equation of continuity 206 5.5.1 Integral form 206 5.5.2 Differential form 207 5.5.3 Elastic liquid 207 5.5.4 Compressible liquid 209 5.6 Energy conservation law, the dynamic equation 209 5.6.1 Total energy of the control volume 209 5.6.2 Rate of change of internal energy 210 5.6.3 Rate of change of potential energy 210 5.6.4 Rate of change of kinetic energy 210 5.6.5 Power of normal forces 211 5.6.6 Power of resistance forces 212 5.6.7 Dynamic equation 212 5.6.8 Flow resistances, the dynamic equation discussion 213 5.7 Flow models 215 5.7.1 Steady flow 215 5.7.2 Non-steady flow 217 5.8 Characteristic equations 220 5.8.1 Elastic liquid 220 5.8.2 Compressible fluid 223 5.9 Analytical solutions 225 5.9.1 Linearization of equations - wave equations 225 5.9.2 Riemann general solution 226 5.9.3 Some analytical solutions of water hammer 227 Reference 229 Further reading 229 6 Modelling of Non-steady Flow of Compressible Liquid in Pipes 231 6.1 Solution by the method of characteristics 231 6.1.1 Characteristic equations 231 6.1.2 Integration of characteristic equations, wave functions 232 6.1.3 Integration of Characteristic Equations, Variables H, V 234 6.1.4 The water hammer is the pipe with no resistance 235 6.1.5 Water hammers in pipes with friction 243 6.2 Subroutine UnsteadyPipeMtx 251 6.2.1 Subroutine FemUnsteadyPipeMtx 252 6.2.2 Subroutine ChtxUnsteadyPipeMtx 255 6.3 Comparison tests 261 6.3.1 Test example 261 6.3.2 Conclusion 263 Further reading 264 7 Valves and Joints 265 7.1 Valves 265 7.1.1 Local energy head losses at valves 265 7.1.2 Valve status 267 7.1.3 Steady flow modelling 267 7.1.4 Non-steady flow modelling 269 7.2 Joints 279 7.2.1 Energy head losses at joints 279 7.2.2 Steady flow modelling 279 7.2.3 Non-steady flow modelling 282 7.3 Test example 288 Reference 290 Further reading 290 8 Pumping Units 291 8.1 Introduction 291 8.2 Euler's equations of turbo engines 291 8.3 Normal characteristics of the pump 295 8.4 Dimensionless pump characteristics 301 8.5 Pump specific speed 303 8.6 Complete characteristics of turbo engine 305 8.6.1 Normal and abnormal operation 305 8.6.2 Presentation of turbo engine characteristics depending on the direction of rotation 305 8.6.3 Knapp circle diagram 305 8.6.4 Suter curves 308 8.7 Drive engines 310 8.7.1 Asynchronous or induction motor 310 8.7.2 Adjustment of rotational speed by frequency variation 311 8.7.3 Pumping unit operation 312 8.8 Numerical model of pumping units 314 8.8.1 Normal pump operation 314 8.8.2 Reconstruction of complete characteristics from normal characteristics 318 8.8.3 Reconstruction of a hypothetic pumping unit 321 8.8.4 Reconstruction of the electric motor torque curve 322 8.9 Pumping element matrices 323 8.9.1 Steady flow modelling 323 8.9.2 Unsteady flow modelling 327 8.10 Examples of transient operation stage modelling 333 8.10.1 Test example (A) 334 8.10.2 Test example (B) 336 8.10.3 Test example (C) 339 8.10.4 Test example (D) 341 8.11 Analysis of operation and types of protection against pressure excesses 345 8.11.1 Normal and accidental operation 345 8.11.2 Layout 345 8.11.3 Supply pipeline, suction basin 346 8.11.4 Pressure pipeline and pumping station 348 8.11.5 Booster station 350 8.12 Something about protection of sewage pressure pipelines 353 8.13 Pumping units in a pressurized system with no tank 355 8.13.1 Introduction 355 8.13.2 Pumping unit regulation by pressure switches 355 8.13.3 Hydrophor regulation 358 8.13.4 Pumping unit regulation by variable rotational speed 360 Reference 362 Further reading 362 9 Open Channel Flow 363 9.1 Introduction 363 9.2 Steady flow in a mildly sloping channel 363 9.3 Uniform flow in a mildly sloping channel 365 9.3.1 Uniform flow velocity in open channel 365 9.3.2 Conveyance, discharge curve 368 9.3.3 Specific energy in a cross-section: Froude number 372 9.3.4 Uniform flow programming solution 377 9.4 Non-uniform gradually varied flow 378 9.4.1 Non-uniform flow characteristics 378 9.4.2 Water level differential equation 380 9.4.3 Water level shapes in prismatic channels 382 9.4.4 Transitions between supercritical and subcritical flow, hydraulic jump 383 9.4.5 Water level shapes in a non-prismatic channel 391 9.4.6 Gradually varied flow programming solutions 395 9.5 Sudden changes in cross-sections 398 9.6 Steady flow modelling 401 9.6.1 Channel stretch discretization 401 9.6.2 Initialization of channel stretches 402 9.6.3 Subroutine SubCriticalSteadyChannelMtx 404 9.6.4 Subroutine SuperCriticalSteadyChannelMtx 406 9.7 Wave kinematics in channels 407 9.7.1 Propagation of positive and negative waves 407 9.7.2 Velocity of the wave of finite amplitude 407 9.7.3 Elementary wave celerity 409 9.7.4 Shape of positive and negative waves 411 9.7.5 Standing wave - hydraulic jump 412 9.7.6 Wave propagation through transitional stretches 413 9.8 Equations of non-steady flow in open channels 414 9.8.1 Continuity equation 414 9.8.2 Dynamic equation 416 9.8.3 Law of momentum conservation 417 9.9 Equation of characteristics 422 9.9.1 Transformation of non-steady flow equations 422 9.9.2 Procedure of transformation into characteristics 423 9.10 Initial and boundary conditions 424 9.11 Non-steady flow modelling 425 9.11.1 Integration along characteristics 425 9.11.2 Matrix and vector of the channel finite element 427 9.11.3 Test examples 431 References 434 Further reading 435 10 Numerical Modelling in Karst 437 10.1 Underground karst flows 437 10.1.1 Introduction 437 10.1.2 Investigation works in karst catchment 437 10.1.3 The main development forms of karst phenomena in the Dinaric area 438 10.1.4 The size of the catchment 443 10.2 Conveyance of the karst channel system 446 10.2.1 Transformation of rainfall into spring hydrographs 446 10.2.2 Linear filtration law 447 10.2.3 Turbulent filtration law 449 10.2.4 Complex flow, channel flow, and filtration 451 10.3 Modelling of karst channel flows 453 10.3.1 Karst channel finite elements 453 10.3.2 Subroutine SteadyKanalMtx 454 10.3.3 Subroutine UnsteadyKanalMtx 456 10.3.4 Tests 458 10.4 Method of catchment discretization 463 10.4.1 Discretization of karst catchment channel system without diffuse flow 463 10.4.2 Equation of the underground accumulation of a karst sub-catchment 466 10.5 Rainfall transformation 468 10.5.1 Uniform input hydrograph 468 10.5.2 Rainfall at the catchment 473 10.6 Discretization of karst catchment with diffuse and channel flow 474 References 477 Further reading 477 11 Convective-dispersive Flows 479 11.1 Introduction 479 11.2 A reminder of continuum mechanics 479 11.3 Hydrodynamic dispersion 483 11.4 Equations of convective-dispersive heat transfer 485 11.5 Exact solutions of convective-dispersive equation 487 11.5.1 Convective equation 487 11.5.2 Convective-dispersive equation 488 11.5.3 Transformation of the convective-dispersive equation 490 11.6 Numerical modelling in a hydraulic network 490 11.6.1 The selection of solution basis, shape functions 490 11.6.2 Elemental equations: equation integration on the finite element 492 11.6.3 Nodal equations 495 11.6.4 Boundary conditions 495 11.6.5 Matrix and vector of finite element 496 11.6.6 Numeric solution test 497 11.6.7 Heat exchange of water table 499 11.6.8 Equilibrium temperature and linearization 500 11.6.9 Temperature disturbance caused by artificial sources 501 References 503 Further reading 503 12 Hydraulic Vibrations in Networks 505 12.1 Introduction 505 12.2 Vibration equations of a pipe element 506 12.3 Harmonic solution for the pipe element 508 12.4 Harmonic solutions in the network 509 12.5 Vibration source modelling 512 12.6 Hints to implementation in SimpipCore 512 12.7 Illustrative examples 515 Reference 518 Further reading 518 Index 519