Analysis of Symbolic Data (eBook, PDF)
Exploratory Methods for Extracting Statistical Information from Complex Data
Redaktion: Bock, Hans-Hermann; Diday, Edwin
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
Analysis of Symbolic Data (eBook, PDF)
Exploratory Methods for Extracting Statistical Information from Complex Data
Redaktion: Bock, Hans-Hermann; Diday, Edwin
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book presents the most recent methods for analyzing and visualizing symbolic data. It generalizes classical methods of exploratory, statistical and graphical data analysis to the case of complex data. Several benchmark examples from National Statistical Offices illustrate the usefulness of the methods. The book contains an extensive bibliography and a subject index.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 75.97MB
Andere Kunden interessierten sich auch für
- Selected Contributions in Data Analysis and Classification (eBook, PDF)73,95 €
- Data Analysis, Classification, and Related Methods (eBook, PDF)73,95 €
- Classification and Data Analysis (eBook, PDF)73,95 €
- Challenges at the Interface of Data Analysis, Computer Science, and Optimization (eBook, PDF)73,95 €
- Conceptual and Numerical Analysis of Data (eBook, PDF)73,95 €
- Susan B. GerberThe SPSS Guide to the New Statistical Analysis of Data (eBook, PDF)73,95 €
- Wolfgang Karl HärdleMultivariate Statistics: (eBook, PDF)40,95 €
-
-
-
This book presents the most recent methods for analyzing and visualizing symbolic data. It generalizes classical methods of exploratory, statistical and graphical data analysis to the case of complex data. Several benchmark examples from National Statistical Offices illustrate the usefulness of the methods. The book contains an extensive bibliography and a subject index.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 425
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642571558
- Artikelnr.: 52999145
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 425
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642571558
- Artikelnr.: 52999145
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Symbolic Data Analysis and the SODAS Project: Purpose, History, Perspective.- 1.1 Introduction.- 1.2 Symbolic Data Tables and Symbolic Objects.- 1.3 Tools and Operations for Symbolic Objects.- 1.4 History and Evolution of SDA.- 1.5 The Content of the SODAS Project.- 1.6 Philosophical Background: Concepts and Symbolic Objects.- 1.7 Advantages of Using Symbolic Data Analysis.- 1.8 The Future Development of SODAS.- 2 The Classical Data Situation.- 2.1 Introduction.- 2.2 Variables as Input Data.- 2.3 Quantitative Variables.- 2.4 Qualitative Variables.- 2.5 Data Vectors and the Data Matrix.- 2.6 Dependent Variables.- 2.7 Missing Values.- 3 Symbolic Data.- 3.1 Three Introductory Examples.- 3.2 Multi-Valued and Interval Variables.- 3.3 Modal Variables.- 3.4 A Synthesis of Symbolic Data Types.- 3.5 The Symbolic Data Array.- 4 Symbolic Objects.- 4.1 Introduction and Examples.- 4.2 Relations and Descriptions.- 4.3 Events and Assertion Objects.- 4.4 Boolean Symbolic Objects as Triples.- 4.5 Modal Symbolic Objects.- 5 Generation of Symbolic Objects from Relational Databases.- 5.1 Introduction to Relational Databases.- 5.2 Principles of Symbolic Object Acquisition from Relational Databases.- 5.3 Interaction with the Database.- 5.4 A Generalization Operator.- 5.5 Further Operations on Generated Assertions.- 6 Descriptive Statistics for Symbolic Data.- 6.1 Descriptive Statistics for a Classical Numerical Variable.- 6.2 The Observed Symbolic Data Set.- 6.3 The Case of Multi-Valued Variables.- 6.4 The Case of an Interval-Valued Variable.- 7 Visualizing and Editing Symbolic Objects.- 7.1 The Zoom Star Representation.- 7.2 Editing Symbolic Objects.- 8 Similarity and Dissimilarity.- 8.1 Classical Resemblance Measures.- 8.2 Dissimilarity Measures for Probability Distributions.- 8.3 Dissimilarity Measures for Symbolic Objects.- 8.4 Matching Symbolic Objects.- 9 Symbolic Factor Analysis.- 9.1 Classical Principal Component Analysis.- 9.2 Symbolic Principal Component Analysis.- 9.3 Factorial Discriminant Analysis on Symbolic Objects.- 10 Discrimination: Assigning Symbolic Objects to Classes.- 10.1 Classical Methods of Discrimination.- 10.2 Symbolic Kernel Discriminant Analysis.- 10.3 Symbolic Discrimination Rules.- 10.4 Segmentation Trees for Stratified Data.- 11 Clustering Methods for Symbolic Objects.- 11.1 Clustering Problem, Clustering Methods for Classical Data.- 11.2 Criterion-Based Divisive Clustering for Symbolic Data.- 11.3 Hierarchical and Pyramidal Clustering with Complete Symbolic Objects.- 11.4 Pyramidal Classification for Interval Data Using Galois Lattice Reduction.- 12 Symbolic Approaches for Three-way Data.- 12.1 Introduction.- 12.2 The Input and Output Data.- 12.3 Processing Temporal Data.- 12.4 Interpretation of Outcomes from Processing of Temporal Changes.- 12.5 Real-Case Examples.- 13 Illustrative Benchmark Analyses.- 13.1. Introduction.- 13.2 Professional Careers of Retired Working Persons.- 13.3 Comparing European Labour Force Survey Results from the Basque Country and Portugal.- 13.4 Processing Census Data from ONS.- 13.5 General Conclusion.- 14 The SODAS Software Package.- 14.1 Short Introduction to the SODAS Software.- 14.2 Short Processing of a Chaining.- 14.3 Short List of Methods in SODAS Software.- Notations and Abbreviations.- Addresses of Contributors to this Volume.
Symbolic Data Analysis and the SODAS Project: Purpose, History, Perspective.- 1.1 Introduction.- 1.2 Symbolic Data Tables and Symbolic Objects.- 1.3 Tools and Operations for Symbolic Objects.- 1.4 History and Evolution of SDA.- 1.5 The Content of the SODAS Project.- 1.6 Philosophical Background: Concepts and Symbolic Objects.- 1.7 Advantages of Using Symbolic Data Analysis.- 1.8 The Future Development of SODAS.- 2 The Classical Data Situation.- 2.1 Introduction.- 2.2 Variables as Input Data.- 2.3 Quantitative Variables.- 2.4 Qualitative Variables.- 2.5 Data Vectors and the Data Matrix.- 2.6 Dependent Variables.- 2.7 Missing Values.- 3 Symbolic Data.- 3.1 Three Introductory Examples.- 3.2 Multi-Valued and Interval Variables.- 3.3 Modal Variables.- 3.4 A Synthesis of Symbolic Data Types.- 3.5 The Symbolic Data Array.- 4 Symbolic Objects.- 4.1 Introduction and Examples.- 4.2 Relations and Descriptions.- 4.3 Events and Assertion Objects.- 4.4 Boolean Symbolic Objects as Triples.- 4.5 Modal Symbolic Objects.- 5 Generation of Symbolic Objects from Relational Databases.- 5.1 Introduction to Relational Databases.- 5.2 Principles of Symbolic Object Acquisition from Relational Databases.- 5.3 Interaction with the Database.- 5.4 A Generalization Operator.- 5.5 Further Operations on Generated Assertions.- 6 Descriptive Statistics for Symbolic Data.- 6.1 Descriptive Statistics for a Classical Numerical Variable.- 6.2 The Observed Symbolic Data Set.- 6.3 The Case of Multi-Valued Variables.- 6.4 The Case of an Interval-Valued Variable.- 7 Visualizing and Editing Symbolic Objects.- 7.1 The Zoom Star Representation.- 7.2 Editing Symbolic Objects.- 8 Similarity and Dissimilarity.- 8.1 Classical Resemblance Measures.- 8.2 Dissimilarity Measures for Probability Distributions.- 8.3 Dissimilarity Measures for Symbolic Objects.- 8.4 Matching Symbolic Objects.- 9 Symbolic Factor Analysis.- 9.1 Classical Principal Component Analysis.- 9.2 Symbolic Principal Component Analysis.- 9.3 Factorial Discriminant Analysis on Symbolic Objects.- 10 Discrimination: Assigning Symbolic Objects to Classes.- 10.1 Classical Methods of Discrimination.- 10.2 Symbolic Kernel Discriminant Analysis.- 10.3 Symbolic Discrimination Rules.- 10.4 Segmentation Trees for Stratified Data.- 11 Clustering Methods for Symbolic Objects.- 11.1 Clustering Problem, Clustering Methods for Classical Data.- 11.2 Criterion-Based Divisive Clustering for Symbolic Data.- 11.3 Hierarchical and Pyramidal Clustering with Complete Symbolic Objects.- 11.4 Pyramidal Classification for Interval Data Using Galois Lattice Reduction.- 12 Symbolic Approaches for Three-way Data.- 12.1 Introduction.- 12.2 The Input and Output Data.- 12.3 Processing Temporal Data.- 12.4 Interpretation of Outcomes from Processing of Temporal Changes.- 12.5 Real-Case Examples.- 13 Illustrative Benchmark Analyses.- 13.1. Introduction.- 13.2 Professional Careers of Retired Working Persons.- 13.3 Comparing European Labour Force Survey Results from the Basque Country and Portugal.- 13.4 Processing Census Data from ONS.- 13.5 General Conclusion.- 14 The SODAS Software Package.- 14.1 Short Introduction to the SODAS Software.- 14.2 Short Processing of a Chaining.- 14.3 Short List of Methods in SODAS Software.- Notations and Abbreviations.- Addresses of Contributors to this Volume.