Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Autorenporträt
Michael Drmota is Professor for Discrete Mathematics at TU Wien. His research activities range from analytic combinatorics over discrete random structures to number theory. He has published several books, including 'Random Trees' (2009), and about 200 research articles. He was President of the Austrian Mathematical Society from 2010 to 2013, and has been Corresponding Member of the Austrian Academy of Sciences since 2013.
Inhaltsangabe
Part I. Known Sources: 1. Preliminaries 2. Shannon and Huffman FV codes 3. Tunstall and Khodak VF codes 4. Divide-and-conquer VF codes 5. Khodak VV codes 6. Non-prefix one-to-one codes 7. Advanced data structures: tree compression 8. Graph and structure compression Part II. Universal Codes: 9. Minimax redundancy and regret 10. Redundancy of universal memoryless sources 11. Markov types and redundancy for Markov sources 12. Non-Markovian sources: redundancy of renewal processes A. Probability B. Generating functions C. Complex asymptotics D. Mellin transform and Tauberian theorems E. Exponential sums and uniform distribution mod 1 F. Diophantine approximation References Index.
Part I. Known Sources: 1. Preliminaries 2. Shannon and Huffman FV codes 3. Tunstall and Khodak VF codes 4. Divide-and-conquer VF codes 5. Khodak VV codes 6. Non-prefix one-to-one codes 7. Advanced data structures: tree compression 8. Graph and structure compression Part II. Universal Codes: 9. Minimax redundancy and regret 10. Redundancy of universal memoryless sources 11. Markov types and redundancy for Markov sources 12. Non-Markovian sources: redundancy of renewal processes A. Probability B. Generating functions C. Complex asymptotics D. Mellin transform and Tauberian theorems E. Exponential sums and uniform distribution mod 1 F. Diophantine approximation References Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497