Analytical and Numerical Methods for Vibration Analyses (eBook, ePUB)
Alle Infos zum eBook verschenken
Analytical and Numerical Methods for Vibration Analyses (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Illustrates theories and associated mathematical expressions with numerical examples using various methods, leading to exact solutions, more accurate results, and more computationally efficient techniques This book presents the derivations of the equations of motion for all structure foundations using either the continuous model or the discrete model. This mathematical display is a strong feature of the book as it helps to explain in full detail how calculations are reached and interpreted. In addition to the simple 'uniform' and 'straight' beams, the book introduces solution techniques for…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 17.53MB
- Houman BorouchakiMeshing, Geometric Modeling and Numerical Simulation 1 (eBook, ePUB)139,99 €
- Jean-Charles MaréAerospace Actuators 3 (eBook, ePUB)139,99 €
- Géry De SaxcéGalilean Mechanics and Thermodynamics of Continua (eBook, ePUB)144,99 €
- Christian GentilGeometric Modeling of Fractal Forms for CAD (eBook, ePUB)139,99 €
- Dominique BonneauMixed Lubrication in Hydrodynamic Bearings (eBook, ePUB)139,99 €
- Jean-Charles MaréAerospace Actuators 1 (eBook, ePUB)139,99 €
- Benoit DescampsComputational Design of Lightweight Structures (eBook, ePUB)139,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 724
- Erscheinungstermin: 5. August 2013
- Englisch
- ISBN-13: 9781118632369
- Artikelnr.: 39478173
- Verlag: John Wiley & Sons
- Seitenzahl: 724
- Erscheinungstermin: 5. August 2013
- Englisch
- ISBN-13: 9781118632369
- Artikelnr.: 39478173
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
yi(
) (i = 1 - 4) 437 6.5.5 Determination of Shape Functions
xi(
) (i = 1 - 4) 440 6.5.6 Determination of Shape Functions
zi(
) (i = 1 - 4) 441 6.5.7 Determination of Shape Functions
xi(
) (i = 1 - 4) 443 6.5.8 Shape Functions for a 3D Beam Element 445 6.6 Property Matrices of a Three-Dimensional Timoshenko Beam Element 451 6.6.1 Stiffness Matrix of a 3D Timoshenko Beam Element 451 6.6.2 Mass Matrix of a 3D Timoshenko Beam Element 458 6.7 Transformation Matrix for a Two-Dimensional Beam Element 462 6.8 Transformations of Element Stiffness Matrix and Mass Matrix 464 6.9 Transformation Matrix for a Three-Dimensional Beam Element 465 6.10 Property Matrices of a Beam Element with Concentrated Elements 469 6.11 Property Matrices of Rigid-Pinned and Pinned-Rigid Beam Elements 472 6.11.1 Property Matrices of the R-P Beam Element 474 6.11.2 Property Matrices of the P-R Beam Element 476 6.12 Geometric Stiffness Matrix of a Beam Element Due to Axial Load 477 6.13 Stiffness Matrix of a Beam Element Due to Elastic Foundation 480 References 482 7 Analytical Methods and Finite Element Method for Free Vibration Analyses of Circularly Curved Beams 483 7.1 Analytical Solution for Out-of-Plane Vibration of a Curved Euler Beam 483 7.1.1 Differential Equations for Displacement Functions 484 7.1.2 Determination of Displacement Functions 485 7.1.3 Internal Forces and Moments 490 7.1.4 Equilibrium and Continuity Conditions 491 7.1.5 Determination of Natural Frequencies and Mode Shapes 493 7.1.6 Classical and Non-Classical Boundary Conditions 495 7.1.7 Numerical Examples 497 7.2 Analytical Solution for Out-of-Plane Vibration of a Curved Timoshenko Beam 503 7.2.1 Coupled Equations of Motion and Boundary Conditions 503 7.2.2 Uncoupled Equation of Motion for uy 507 7.2.3 The Relationships Between
x,
and uy 508 7.2.4 Determination of Displacement Functions Uy(
),
x(
) and
(
) 509 7.2.5 Internal Forces and Moments 512 7.2.6 Classical Boundary Conditions 513 7.2.7 Equilibrium and Compatibility Conditions 515 7.2.8 Determination of Natural Frequencies and Mode Shapes 518 7.2.9 Numerical Examples 520 7.3 Analytical Solution for In-Plane Vibration of a Curved Euler Beam 521 7.3.1 Differential Equations for Displacement Functions 521 7.3.2 Determination of Displacement Functions 527 7.3.3 Internal Forces and Moments 529 7.3.4 Continuity and Equilibrium Conditions 530 7.3.5 Determination of Natural Frequencies and Mode Shapes 533 7.3.6 Classical Boundary Conditions 536 7.3.7 Mode Shapes Obtained From Finite Element Method and Analytical (Exact) Method 537 7.3.8 Numerical Examples 539 7.4 Analytical Solution for In-Plane Vibration of a Curved Timoshenko Beam 547 7.4.1 Differential Equations for Displacement Functions 547 7.4.2 Determination of Displacement Functions 552 7.4.3 Internal Forces and Moments 553 7.4.4 Equilibrium and Compatibility Conditions 554 7.4.5 Determination of Natural Frequencies and Mode Shapes 558 7.4.6 Classical and Non-Classical Boundary Conditions 560 7.4.7 Numerical Examples 562 7.5 Out-of-Plane Vibration of a Curved Beam by Finite Element Method with Curved Beam Elements 564 7.5.1 Displacement Functions and Shape Functions 565 7.5.2 Stiffness Matrix for Curved Beam Element 573 7.5.3 Mass Matrix for Curved Beam Element 575 7.5.4 Numerical Example 576 7.6 In-Plane Vibration of a Curved Beam by Finite Element Method with Curved Beam Elements 578 7.6.1 Displacement Functions 578 7.6.2 Element Stiffness Matrix 586 7.6.3 Element Mass Matrix 587 7.6.4 Boundary Conditions of the Curved and Straight Finite Element Methods 589 7.6.5 Numerical Examples 590 7.7 Finite Element Method with Straight Beam Elements for Out-of-Plane Vibration of a Curved Beam 595 7.7.1 Property Matrices of Straight Beam Element for Out-of-Plane Vibrations 596 7.7.2 Transformation Matrix for Out-of-Plane Straight Beam Element 599 7.8 Finite Element Method with Straight Beam Elements for In-Plane Vibration of a Curved Beam 601 7.8.1 Property Matrices of Straight Beam Element for In-Plane Vibrations 602 7.8.2 Transformation Matrix for the In-Plane Straight Beam Element 605 References 606 8 Solution for the Equations of Motion 609 8.1 Free Vibration Response of an SDOF System 609 8.2 Response of an Undamped SDOF System Due to Arbitrary Loading 612 8.3 Response of a Damped SDOF System Due to Arbitrary Loading 614 8.4 Numerical Method for the Duhamel Integral 615 8.4.1 General Summation Techniques 615 8.4.2 The Linear Loading Method 629 8.5 Exact Solution for the Duhamel Integral 633 8.6 Exact Solution for a Damped SDOF System Using the Classical Method 636 8.7 Exact Solution for an Undamped SDOF System Using the Classical Method 639 8.8 Approximate Solution for an SDOF Damped System by the Central Difference Method 642 8.9 Solution for the Equations of Motion of an MDOF System 645 8.9.1 Direct Integration Methods 645 8.9.2 The Mode Superposition Method 649 8.10 Determination of Forced Vibration Response Amplitudes 659 8.10.1 Total and Steady Response Amplitudes of an SDOF System 660 8.10.2 Determination of Steady Response Amplitudes of an MDOF System 662 8.11 Numerical Examples for Forced Vibration Response Amplitudes 668 8.11.1 Frequency-Response Curves of an SDOF System 668 8.11.2 Frequency-Response Curves of an MDOF System 670 References 675 Appendices 677 A.1 List of Integrals 677 A.2 Theory of Modified Half-Interval (or Bisection) Method 680 A.3 Determinations of Influence Coefficients 681 A.3.1 Determination of Influence Coefficients aiYM and ai
M 681 A.3.2 Determination of Influence Coefficients aiYQ and ai
Q 683 A.4 Exact Solution of a Cubic Equation 685 A.5 Solution of a Cubic Equation Associated with Its Complex Roots 686 A.6 Coefficients of Matrix [H] Defined by Equation (7.387) 687 A.7 Coefficients of Matrix [H] Defined by Equation (7.439) 689 A.8 Exact Solution for a Simply Supported Euler Arch 691 References 693 Index 695
yi(
) (i = 1 - 4) 437 6.5.5 Determination of Shape Functions
xi(
) (i = 1 - 4) 440 6.5.6 Determination of Shape Functions
zi(
) (i = 1 - 4) 441 6.5.7 Determination of Shape Functions
xi(
) (i = 1 - 4) 443 6.5.8 Shape Functions for a 3D Beam Element 445 6.6 Property Matrices of a Three-Dimensional Timoshenko Beam Element 451 6.6.1 Stiffness Matrix of a 3D Timoshenko Beam Element 451 6.6.2 Mass Matrix of a 3D Timoshenko Beam Element 458 6.7 Transformation Matrix for a Two-Dimensional Beam Element 462 6.8 Transformations of Element Stiffness Matrix and Mass Matrix 464 6.9 Transformation Matrix for a Three-Dimensional Beam Element 465 6.10 Property Matrices of a Beam Element with Concentrated Elements 469 6.11 Property Matrices of Rigid-Pinned and Pinned-Rigid Beam Elements 472 6.11.1 Property Matrices of the R-P Beam Element 474 6.11.2 Property Matrices of the P-R Beam Element 476 6.12 Geometric Stiffness Matrix of a Beam Element Due to Axial Load 477 6.13 Stiffness Matrix of a Beam Element Due to Elastic Foundation 480 References 482 7 Analytical Methods and Finite Element Method for Free Vibration Analyses of Circularly Curved Beams 483 7.1 Analytical Solution for Out-of-Plane Vibration of a Curved Euler Beam 483 7.1.1 Differential Equations for Displacement Functions 484 7.1.2 Determination of Displacement Functions 485 7.1.3 Internal Forces and Moments 490 7.1.4 Equilibrium and Continuity Conditions 491 7.1.5 Determination of Natural Frequencies and Mode Shapes 493 7.1.6 Classical and Non-Classical Boundary Conditions 495 7.1.7 Numerical Examples 497 7.2 Analytical Solution for Out-of-Plane Vibration of a Curved Timoshenko Beam 503 7.2.1 Coupled Equations of Motion and Boundary Conditions 503 7.2.2 Uncoupled Equation of Motion for uy 507 7.2.3 The Relationships Between
x,
and uy 508 7.2.4 Determination of Displacement Functions Uy(
),
x(
) and
(
) 509 7.2.5 Internal Forces and Moments 512 7.2.6 Classical Boundary Conditions 513 7.2.7 Equilibrium and Compatibility Conditions 515 7.2.8 Determination of Natural Frequencies and Mode Shapes 518 7.2.9 Numerical Examples 520 7.3 Analytical Solution for In-Plane Vibration of a Curved Euler Beam 521 7.3.1 Differential Equations for Displacement Functions 521 7.3.2 Determination of Displacement Functions 527 7.3.3 Internal Forces and Moments 529 7.3.4 Continuity and Equilibrium Conditions 530 7.3.5 Determination of Natural Frequencies and Mode Shapes 533 7.3.6 Classical Boundary Conditions 536 7.3.7 Mode Shapes Obtained From Finite Element Method and Analytical (Exact) Method 537 7.3.8 Numerical Examples 539 7.4 Analytical Solution for In-Plane Vibration of a Curved Timoshenko Beam 547 7.4.1 Differential Equations for Displacement Functions 547 7.4.2 Determination of Displacement Functions 552 7.4.3 Internal Forces and Moments 553 7.4.4 Equilibrium and Compatibility Conditions 554 7.4.5 Determination of Natural Frequencies and Mode Shapes 558 7.4.6 Classical and Non-Classical Boundary Conditions 560 7.4.7 Numerical Examples 562 7.5 Out-of-Plane Vibration of a Curved Beam by Finite Element Method with Curved Beam Elements 564 7.5.1 Displacement Functions and Shape Functions 565 7.5.2 Stiffness Matrix for Curved Beam Element 573 7.5.3 Mass Matrix for Curved Beam Element 575 7.5.4 Numerical Example 576 7.6 In-Plane Vibration of a Curved Beam by Finite Element Method with Curved Beam Elements 578 7.6.1 Displacement Functions 578 7.6.2 Element Stiffness Matrix 586 7.6.3 Element Mass Matrix 587 7.6.4 Boundary Conditions of the Curved and Straight Finite Element Methods 589 7.6.5 Numerical Examples 590 7.7 Finite Element Method with Straight Beam Elements for Out-of-Plane Vibration of a Curved Beam 595 7.7.1 Property Matrices of Straight Beam Element for Out-of-Plane Vibrations 596 7.7.2 Transformation Matrix for Out-of-Plane Straight Beam Element 599 7.8 Finite Element Method with Straight Beam Elements for In-Plane Vibration of a Curved Beam 601 7.8.1 Property Matrices of Straight Beam Element for In-Plane Vibrations 602 7.8.2 Transformation Matrix for the In-Plane Straight Beam Element 605 References 606 8 Solution for the Equations of Motion 609 8.1 Free Vibration Response of an SDOF System 609 8.2 Response of an Undamped SDOF System Due to Arbitrary Loading 612 8.3 Response of a Damped SDOF System Due to Arbitrary Loading 614 8.4 Numerical Method for the Duhamel Integral 615 8.4.1 General Summation Techniques 615 8.4.2 The Linear Loading Method 629 8.5 Exact Solution for the Duhamel Integral 633 8.6 Exact Solution for a Damped SDOF System Using the Classical Method 636 8.7 Exact Solution for an Undamped SDOF System Using the Classical Method 639 8.8 Approximate Solution for an SDOF Damped System by the Central Difference Method 642 8.9 Solution for the Equations of Motion of an MDOF System 645 8.9.1 Direct Integration Methods 645 8.9.2 The Mode Superposition Method 649 8.10 Determination of Forced Vibration Response Amplitudes 659 8.10.1 Total and Steady Response Amplitudes of an SDOF System 660 8.10.2 Determination of Steady Response Amplitudes of an MDOF System 662 8.11 Numerical Examples for Forced Vibration Response Amplitudes 668 8.11.1 Frequency-Response Curves of an SDOF System 668 8.11.2 Frequency-Response Curves of an MDOF System 670 References 675 Appendices 677 A.1 List of Integrals 677 A.2 Theory of Modified Half-Interval (or Bisection) Method 680 A.3 Determinations of Influence Coefficients 681 A.3.1 Determination of Influence Coefficients aiYM and ai
M 681 A.3.2 Determination of Influence Coefficients aiYQ and ai
Q 683 A.4 Exact Solution of a Cubic Equation 685 A.5 Solution of a Cubic Equation Associated with Its Complex Roots 686 A.6 Coefficients of Matrix [H] Defined by Equation (7.387) 687 A.7 Coefficients of Matrix [H] Defined by Equation (7.439) 689 A.8 Exact Solution for a Simply Supported Euler Arch 691 References 693 Index 695