Analytical System Dynamics: Modeling and Simulation combines results from analytical mechanics and system dynamics to develop an approach to modeling constrained multidiscipline dynamic systems. This combination yields a modeling technique based on the energy method of Lagrange, which in turn, results in a set of differential-algebraic equations that are suitable for numerical integration. Using the modeling approach presented in this book enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier. Drawing upon years of practical experience and using numerous examples and applications Brian Fabien discusses: Lagrange's equation of motion starting with the First Law of Thermodynamics, rather than the traditional Hamilton's principle Treatment of the kinematic/structural analysis of machines and mechanisms, as well as the structural analysis of electrical/fluid/thermal networks
Various aspects of modeling and simulating dynamic systems using a Lagrangian approach with more than 125 worked examples Simulation results for various models developed using MATLAB Analytical System Dynamics: Modeling and Simulation will be of interest to students, researchers and practicing engineers who wish to use a multidisciplinary approach to dynamic systems incorporating material and examples from electrical systems, fluid systems and mixed technology systems that carries the derivation of differential equations to a final form that can be used for simulation.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.