54,95 €
54,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
54,95 €
Als Download kaufen
54,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
54,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
27 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is primarily aimed at students, researchers, and practitioners from all areas who wish to analyze corresponding data with R. Readers will learn a broad array of models hand-in-hand with R, including the application of some of the most important add-on packages.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 3.66MB
Andere Kunden interessierten sich auch für
- Lukas MeierANOVA and Mixed Models (eBook, ePUB)54,95 €
- Yan LuR Companion for Sampling (eBook, PDF)29,95 €
- Keith McNultyHandbook of Regression Modeling in People Analytics (eBook, PDF)48,95 €
- John VerzaniUsing R for Introductory Statistics (eBook, PDF)63,95 €
- Brady T. WestLinear Mixed Models (eBook, PDF)95,95 €
- Nathan TabackDesign and Analysis of Experiments and Observational Studies using R (eBook, PDF)88,95 €
- Nick Huntington-KleinThe Effect (eBook, PDF)31,95 €
-
-
-
This book is primarily aimed at students, researchers, and practitioners from all areas who wish to analyze corresponding data with R. Readers will learn a broad array of models hand-in-hand with R, including the application of some of the most important add-on packages.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 201
- Erscheinungstermin: 4. November 2022
- Englisch
- ISBN-13: 9781000776737
- Artikelnr.: 66009228
- Verlag: Taylor & Francis
- Seitenzahl: 201
- Erscheinungstermin: 4. November 2022
- Englisch
- ISBN-13: 9781000776737
- Artikelnr.: 66009228
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Lukas Meier is a senior scientist at the Seminar für Statistik at ETH Zürich. His main interests are teaching statistics at various levels, the application of statistics in many fields of applications using advanced ANOVA or regression models, and high-dimensional statistics. He co-leads the statistical consulting service at ETH Zürich and is the director of a continuing education program in applied statistics.
1. Learning from Data. 1.1. Cause-Effect Relationships. 1.2. Experimental
Studies. 2. Completely Randomized Designs. 2.1. One-Way Analysis of
Variance. 2.2. Checking Model Assumptions. 2.3. Nonparametric Approaches.
2.4. Power or "What Sample Size Do I Need?". 2.5. Adjusting for Covariates.
2.6. Appendix. 3. Contrasts and Multiple Testing. 3.1. Contrasts. 3.2.
Multiple Testing. 4. Factorial Treatment Structure. 4.1. Introduction. 4.2.
Two-Way ANOVA Model. 5. Complete Block Designs. 5.1. Introduction. 5.2.
Randomized Complete Block Designs (RCBD). 5.3. Nonparametric Alternatives.
5.4. Outlook: Multiple Block Factors. 6. Random and Mixed Effects Models.
6.1. Random Effects Models. 7. Split-Plot Designs. 7.1. Introduction. 7.2.
Properties of Split-Plot Designs. 7.3. A More Complex Example in Detail:
Oat Varieties. 8. Incomplete Block Designs. 8.1. Introduction. 8.2.
Balanced Incomplete Block Designs (BIBD). 8.3. Analysis of Incomplete Block
Designs. 8.4. Outlook. 8.5. Concluding Remarks. Bibliography. Index
Studies. 2. Completely Randomized Designs. 2.1. One-Way Analysis of
Variance. 2.2. Checking Model Assumptions. 2.3. Nonparametric Approaches.
2.4. Power or "What Sample Size Do I Need?". 2.5. Adjusting for Covariates.
2.6. Appendix. 3. Contrasts and Multiple Testing. 3.1. Contrasts. 3.2.
Multiple Testing. 4. Factorial Treatment Structure. 4.1. Introduction. 4.2.
Two-Way ANOVA Model. 5. Complete Block Designs. 5.1. Introduction. 5.2.
Randomized Complete Block Designs (RCBD). 5.3. Nonparametric Alternatives.
5.4. Outlook: Multiple Block Factors. 6. Random and Mixed Effects Models.
6.1. Random Effects Models. 7. Split-Plot Designs. 7.1. Introduction. 7.2.
Properties of Split-Plot Designs. 7.3. A More Complex Example in Detail:
Oat Varieties. 8. Incomplete Block Designs. 8.1. Introduction. 8.2.
Balanced Incomplete Block Designs (BIBD). 8.3. Analysis of Incomplete Block
Designs. 8.4. Outlook. 8.5. Concluding Remarks. Bibliography. Index
1. Learning from Data. 1.1. Cause-Effect Relationships. 1.2. Experimental Studies. 2. Completely Randomized Designs. 2.1. One-Way Analysis of Variance. 2.2. Checking Model Assumptions. 2.3. Nonparametric Approaches. 2.4. Power or "What Sample Size Do I Need?". 2.5. Adjusting for Covariates. 2.6. Appendix. 3. Contrasts and Multiple Testing. 3.1. Contrasts. 3.2. Multiple Testing. 4. Factorial Treatment Structure. 4.1. Introduction. 4.2. Two-Way ANOVA Model. 5. Complete Block Designs. 5.1. Introduction. 5.2. Randomized Complete Block Designs (RCBD). 5.3. Nonparametric Alternatives. 5.4. Outlook: Multiple Block Factors. 6. Random and Mixed Effects Models. 6.1. Random Effects Models. 7. Split-Plot Designs. 7.1. Introduction. 7.2. Properties of Split-Plot Designs. 7.3. A More Complex Example in Detail: Oat Varieties. 8. Incomplete Block Designs. 8.1. Introduction. 8.2. Balanced Incomplete Block Designs (BIBD). 8.3. Analysis of Incomplete Block Designs. 8.4. Outlook. 8.5. Concluding Remarks. Bibliography. Index
1. Learning from Data. 1.1. Cause-Effect Relationships. 1.2. Experimental
Studies. 2. Completely Randomized Designs. 2.1. One-Way Analysis of
Variance. 2.2. Checking Model Assumptions. 2.3. Nonparametric Approaches.
2.4. Power or "What Sample Size Do I Need?". 2.5. Adjusting for Covariates.
2.6. Appendix. 3. Contrasts and Multiple Testing. 3.1. Contrasts. 3.2.
Multiple Testing. 4. Factorial Treatment Structure. 4.1. Introduction. 4.2.
Two-Way ANOVA Model. 5. Complete Block Designs. 5.1. Introduction. 5.2.
Randomized Complete Block Designs (RCBD). 5.3. Nonparametric Alternatives.
5.4. Outlook: Multiple Block Factors. 6. Random and Mixed Effects Models.
6.1. Random Effects Models. 7. Split-Plot Designs. 7.1. Introduction. 7.2.
Properties of Split-Plot Designs. 7.3. A More Complex Example in Detail:
Oat Varieties. 8. Incomplete Block Designs. 8.1. Introduction. 8.2.
Balanced Incomplete Block Designs (BIBD). 8.3. Analysis of Incomplete Block
Designs. 8.4. Outlook. 8.5. Concluding Remarks. Bibliography. Index
Studies. 2. Completely Randomized Designs. 2.1. One-Way Analysis of
Variance. 2.2. Checking Model Assumptions. 2.3. Nonparametric Approaches.
2.4. Power or "What Sample Size Do I Need?". 2.5. Adjusting for Covariates.
2.6. Appendix. 3. Contrasts and Multiple Testing. 3.1. Contrasts. 3.2.
Multiple Testing. 4. Factorial Treatment Structure. 4.1. Introduction. 4.2.
Two-Way ANOVA Model. 5. Complete Block Designs. 5.1. Introduction. 5.2.
Randomized Complete Block Designs (RCBD). 5.3. Nonparametric Alternatives.
5.4. Outlook: Multiple Block Factors. 6. Random and Mixed Effects Models.
6.1. Random Effects Models. 7. Split-Plot Designs. 7.1. Introduction. 7.2.
Properties of Split-Plot Designs. 7.3. A More Complex Example in Detail:
Oat Varieties. 8. Incomplete Block Designs. 8.1. Introduction. 8.2.
Balanced Incomplete Block Designs (BIBD). 8.3. Analysis of Incomplete Block
Designs. 8.4. Outlook. 8.5. Concluding Remarks. Bibliography. Index
1. Learning from Data. 1.1. Cause-Effect Relationships. 1.2. Experimental Studies. 2. Completely Randomized Designs. 2.1. One-Way Analysis of Variance. 2.2. Checking Model Assumptions. 2.3. Nonparametric Approaches. 2.4. Power or "What Sample Size Do I Need?". 2.5. Adjusting for Covariates. 2.6. Appendix. 3. Contrasts and Multiple Testing. 3.1. Contrasts. 3.2. Multiple Testing. 4. Factorial Treatment Structure. 4.1. Introduction. 4.2. Two-Way ANOVA Model. 5. Complete Block Designs. 5.1. Introduction. 5.2. Randomized Complete Block Designs (RCBD). 5.3. Nonparametric Alternatives. 5.4. Outlook: Multiple Block Factors. 6. Random and Mixed Effects Models. 6.1. Random Effects Models. 7. Split-Plot Designs. 7.1. Introduction. 7.2. Properties of Split-Plot Designs. 7.3. A More Complex Example in Detail: Oat Varieties. 8. Incomplete Block Designs. 8.1. Introduction. 8.2. Balanced Incomplete Block Designs (BIBD). 8.3. Analysis of Incomplete Block Designs. 8.4. Outlook. 8.5. Concluding Remarks. Bibliography. Index