Antennas and Wireless Power Transfer Methods for Biomedical Applications (eBook, PDF)
Antennas and Wireless Power Transfer Methods for Biomedical Applications (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Antennas and Wireless Power Transfer Methods for Biomedical Applications Join the cutting edge of biomedical technology with this essential reference The role of wireless communications in biomedical technology is a significant one. Wireless and antenna-driven communication between telemetry components now forms the basis of cardiac pacemakers and defibrillators, cochlear implants, glucose readers, and more. As wireless technology continues to advance and miniaturization progresses, it's more essential than ever that biomedical research and development incorporate the latest technology.…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 21.65MB
- Smart Sensors for Environmental and Medical Applications (eBook, PDF)113,99 €
- Antenna and Sensor Technologies in Modern Medical Applications (eBook, PDF)134,99 €
- Antenna and Array Technologies for Future Wireless Ecosystems (eBook, PDF)115,99 €
- Ambarish PaulSolid-State Sensors (eBook, PDF)103,99 €
- Optical Fibre Sensors (eBook, PDF)121,99 €
- Haider RaadFundamentals of IoT and Wearable Technology Design (eBook, PDF)108,99 €
- Wearable and Neuronic Antennas for Medical and Wireless Applications (eBook, PDF)150,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 384
- Erscheinungstermin: 8. März 2024
- Englisch
- ISBN-13: 9781119189923
- Artikelnr.: 70175552
- Verlag: John Wiley & Sons
- Seitenzahl: 384
- Erscheinungstermin: 8. März 2024
- Englisch
- ISBN-13: 9781119189923
- Artikelnr.: 70175552
Healthcare 1.1.1 Wearable Devices 1.1.2 Implantable Devices 1.2 Wireless
Date Telemetry and Powering for Biomedical Devices 1.2.1 Wireless Data
Telemetry for Biomedical Devices 1.2.2 Wireless Power Transmission for
Biomedical Devices 1.3 Overview of Book Reference 2 Miniaturized wideband
and multi-band implantable antennas 2.1 Introduction 2.2 Miniaturization
Methods for Implantable Antenna Design 2.2.1 Use of high-permittivity
dielectric substrate/superstrate 2.2.2 Use of planar inverted-F antenna
structure 2.2.3 Lengthening the current path of the radiator 2.2.4 Loading
technique for impedance matching 2.2.5 Choosing higher operating frequency
2.3 Wideband Miniaturized Implantable Antenna 2.3.1 Introducing adjacent
resonant frequency points A. Linear Wire Antenna B. Slot Antenna C. Loop
Antenna D. Microstrip Patch Antenna 2.3.2 Multiple resonance and wideband
impedance matching 2.3.3 Advanced technology for detuning problem 2.4
Multiband Miniaturized Implantable Antennas 2.4.1 Compact PIFA with
multi-current patch 2.4.2 Open-end slots on ground 2.4.3 Single layer
design 2.5 Conclusions Reference 3 Polarization Design for Implantable
Antennas 3.1 Introduction 3.2 Compact Microstrip Patch Antenna for CP
Implantable Antenna Design 3.2.1 Capacitively Loaded CP Implantable Patch
Antenna 3.2.1.1 An Implantable Microstrip Patch Antenna with a Center
Square Slot 3.2.1.2 Compact-Implantable CP Patch Antenna with Capacitive
Loading 3.2.1.3 Communication Link Study of the CP Implantable Patch
Antenna 3.2.1.4 Sensitivity Evaluation of the Implantable CP patch antenna
3.2.2 Miniaturized Circularly Polarized Implantable Annular-Ring Antenna
3.3 Wide AR Bandwidth Implantable Antenna 3.3.1 Miniaturized CP Implantable
Loop Antenna 3.3.1.1 Configuration of the CP Implantable Loop Antenna
3.3.1.2 Principle of the CP Implantable Loop Antenna 3.3.1.3 Antenna
Measurement and Discussions 3.3.1.4 Communication Link of the Implantable
CP Loop Antennas 3.3.2 Ground Radiation CP Implantable Antenna 3.4
Application Base Design of CP Implantable Antenna----Capsule Endoscopy
3.4.1 Axial-mode Multi-layer Helical Antenna 3.4.1.1 Antenna Structure
3.4.1.2 Conformal Capsule Antenna Design Including Biocompatibility Shell
Consideration 3.4.1.3 Wireless Capsule Endoscope System in a Human Body
3.4.1.4 In-Vitro testing and Discussions 3.4.2 Conformal CP Antenna for
Wireless Capsule Endoscope Systems 3.4.2.1 Antenna Layout and Simulation
Phantom 3.4.2.2 Mechanism of CP Operation 3.4.2.3 Results and Discussion
3.5 In Vivo Testing of Circularly Polarized Implantable Antennas 3.5.1
In-Vivo Testing Configuration 3.5.2 Measured Reflection Coefficient 3.5.3
Analysis of the Results and Discussions 3.6 Conclusions Reference 4
Differential-Fed Implantable Antennas 4.1 Introduction 4.2 Dual-band
Implantable Antenna for Neural Recording 4.2.1 Differential Reflection
Coefficient Characterization 4.2.2 Antenna Design and Operating Principle
4.2.3 Measurement and Discussions 4.2.4 Communication Link Study 4.3
Integrated on-chip Antenna in 0.18µm CMOS Technology 4.3.1 System
Requirement and Antenna Design 4.3.2 Chip-to-SMA Transition Design and
Measurement 4.4 Dual-band Implantable Antenna for Capsule Systems 4.4.1
Planar Implantable Antenna Design 4.4.2 Conformal Capsule Design 4.4.3
Coating and In Vitro Measurement 4.5 Miniaturized Differentially Fed
Dual-band Implantable Antenna 4.5.1 Miniaturized Dual-band Antenna Design
4.5.2 Parametric Analysis and Measurement 4.6 Differentially Fed Antenna
with Complex Input Impedance for Capsule Systems 4.6.1 Antenna Geometry
4.6.2 Operating Principle 4.6.2.1 Equivalent Circuit 4.6.2.2 Parametric
Study 4.6.2.3 Comparison With T-Match 4.6.3 Experiment 4.7 Conclusions
References 5 Wearable Antennas for On-/Off-Body Communications 5.1
Introduction 5.2 Exploring Wearable Antennas: Design, and Fabrication
Techniques 5.2.1 Typical Designs of Wearable Antennas 5.2.2 Variation of
Antenna Characteristics and Design Considerations 5.2.3 AMC-backed
Near-endfire Wearable Antenna 5.3 Latex Substrate and Screen-Printing for
Wearable Antennas Fabrication 5.4 AMC Backed Endfire Antenna 5.4.1
Bidirectional Yagi Antenna for Endfire Radiation 5.4.2 Near-Endfire Yagi
Antenna Backed by SAMC 5.4.3 Near-Endfire Yagi Antenna Backed by DAMC 5.5
Simulations of the Antennas in Free Space 5.5.1 Return Loss 5.5.2 Radiation
Patterns 5.5.3 Gain 5.6 Simulations of the Antennas on Human Body 5.6.1
Frequency detuning 5.6.2 SAR and Antenna Efficiency 5.6.2 Radiation
Patterns on A Human Body 5.7 Antenna Performance Under Deformation 5.8
Experiment 5.8.1 Return Loss 5.8.2 Radiation Pattern Measurement 5.8.3 Gain
Measurement 5.9 Conclusion Reference 6 Investigation and Modeling of
Capacitive Human Body Communication 6.1 Introduction 6.2 Galvanic and
Capacitive Coupling HBC 6.3 Capacitive HBC 6.3.1 Experimental
Characterizations 6.3.2 Numerical Models 6.3.3 Circuit Models of Capacitive
HBC 6.3.4 Theoretical Analysis 6.4 Investigation and Modeling of Capacitive
HBC 6.4.1 Measurement Setup and Results 6.4.2 Simulation Setup and Results
6.4.3 Equivalent Circuit Model 6.5 Conclusions: Other Design Considerations
of HBC systems 6.5.1 Channel Characteristics 6.5.2 Modulation and
Communication Performance 6.5.3 Systems and Application examples Reference
7 Near-Field Wireless Power Transfer for Biomedical Application 7.1
Introduction 7.2 Resonant Inductive Wireless Power Transfer (IWPT) and IWPT
Topologies 7.2.1 Resonances in IWPT 7.2.2 Resonant IWPT Topologies 7.2.3
Power Transfer Efficiency 7.2.4 Experimental Verification 7.2.5 Limitations
of the Resonance Tuning 7.3 IWPT Topology Selection Strategies 7.3.1 For
Applications With A Fixed Load 7.3.2 For Applications With A Variable Load
7.3.3 Optimal Operating Frequency 7.3.4 Upper Limit on Power Transfer
Efficiency 7.4 Capacitive Wireless Power Transfer (CWPT) 7.4.1 NCC Link
Modeling 7.4.1.1 Tissue Model 7.4.1.2 Tissue Loss 7.4.1.3 Conductor Loss
(RC) 7.4.1.4 Self-Inductance 7.4.1.5 Equivalent Capacitance 7.4.1.6 Return
Loss 7.4.1.7 Power Transfer Efficiency 7.4.1.8 Power Transfer Limit 7.4.2
Full-Wave Simulation 7.4.3 Optimal Link Design 7.5 CWPT: Experiments in
Nonhuman Primate Cadaver 7.5.1 Study on Power Transfer Efficiency 7.5.2
Flexion Study 7.6 Summary Reference 8 Far-Field Wireless Power Transmission
for Biomedical Application 8.1 Introduction 8.2 Far-Field EM Coupling 8.2.1
Power Transfer Efficiency 8.2.2 Link Design 8.2.3 Challenges and Solutions
8.3 Enhanced Far-Filed WPT Link for Implants 8.3.1 Safety Considerations
for Far-field Wireless Power Transmission 8.3.2 Implantable Rectenna Design
8.3.2.1 Implantable Antenna Configuration 8.3.2.2 Wireless Power Link Study
8.3.2.3 Safety Concerns 8.3.2.4 Method to Enhance the Received Power
8.3.2.5 Wireless power link with the parasitic patch 8.3.3 Measurement and
Discussion 8.3.3.1 Rectifier Circuit Design 8.3.3.2 Integration Solution of
the Implantable Rectenna 8.3.3.3 Measurement Setup 8.4 WPT Antenna
Misalignment: An Antenna Alignment Method Using Intermodulation 8.4.1
Operation Mechanism 8.4.1.1 PCE Enhancement and Intermodulation Generation
8.4.1.2 Relation Between Intermodulation and Misalignments 8.4.2
Miniaturized IMD Rectenna Design With NRIC Link 8.4.2.1 Miniaturized
Rectifier With Intermodulation Readout 8.4.2.2 IMD Antenna Co-Designed With
Rectifier Circuit 8.4.2.3 NRIC Link Establishment 8.4.3 Experimental
Validation 8.4.3.1 Experimental Setup 8.4.3.2 Results and Discussion 8.5
Summary Reference 9 System Design Example: Peripheral Nerve Implants and
Neurostimulators 9.1 Introduction 9.2 Wireless Powering and Telemetry for
Peripheral Nerve Implants 9.2.1 Peripheral Nerve Prostheses 9.2.1.1
Stimulator Implant 9.2.1.2 Neural Recording 9.2.1.3 Wireless Power Delivery
and Telemetry Requirements 9.2.2 Wireless Platform for Peripheral Nerve
Implants 9.2.2.1 Wireless Platform for Stimulator Implant 9.2.2.2 Wireless
platform for recording implant 9.2.3 Design and Experiments 9.2.3.1 Power
Transfer Characteristics in Tissue Environments 9.2.3.2 Power Transfer Link
for Peripheral Nerve Implants 9.2.3.3 Stimulator Implant Experiment 9.2.4
Safety 9.2.4.1 Biosafety 9.2.4.2 Electrical Safety 9.2.5 Near-Field
Resonant Inductive-Coupling Link (NRIC) Versus Near-Field
Capacitive-Coupling Link (NCC) 9.3 Co-matching Solution for Neurostimulator
Narrow Band Antenna 9.3.1 Co-matching Antenna Operating Mode 9.3.2 Antenna
Property in Body Phantom 9.3.3 Co-matching Circuit Design 9.3.4 Fabrication
Processing of the Proposed Antenna 9.3.5 Reflection Coefficient and
Impedance Measurement 9.3.6 Radiation Performance 9.4 Reconfigurable
Antenna for Neurostimulator 9.4.1 Tuning Principle 9.4.2 Antenna
Configuration and Design Procedures 9.4.3 Antenna Manufacturing and
Measurement Setup 9.4.4 System Design 9.4.5 Antenna Tuning and Optimized RF
Link 9.5 Summary Reference
Healthcare 1.1.1 Wearable Devices 1.1.2 Implantable Devices 1.2 Wireless
Date Telemetry and Powering for Biomedical Devices 1.2.1 Wireless Data
Telemetry for Biomedical Devices 1.2.2 Wireless Power Transmission for
Biomedical Devices 1.3 Overview of Book Reference 2 Miniaturized wideband
and multi-band implantable antennas 2.1 Introduction 2.2 Miniaturization
Methods for Implantable Antenna Design 2.2.1 Use of high-permittivity
dielectric substrate/superstrate 2.2.2 Use of planar inverted-F antenna
structure 2.2.3 Lengthening the current path of the radiator 2.2.4 Loading
technique for impedance matching 2.2.5 Choosing higher operating frequency
2.3 Wideband Miniaturized Implantable Antenna 2.3.1 Introducing adjacent
resonant frequency points A. Linear Wire Antenna B. Slot Antenna C. Loop
Antenna D. Microstrip Patch Antenna 2.3.2 Multiple resonance and wideband
impedance matching 2.3.3 Advanced technology for detuning problem 2.4
Multiband Miniaturized Implantable Antennas 2.4.1 Compact PIFA with
multi-current patch 2.4.2 Open-end slots on ground 2.4.3 Single layer
design 2.5 Conclusions Reference 3 Polarization Design for Implantable
Antennas 3.1 Introduction 3.2 Compact Microstrip Patch Antenna for CP
Implantable Antenna Design 3.2.1 Capacitively Loaded CP Implantable Patch
Antenna 3.2.1.1 An Implantable Microstrip Patch Antenna with a Center
Square Slot 3.2.1.2 Compact-Implantable CP Patch Antenna with Capacitive
Loading 3.2.1.3 Communication Link Study of the CP Implantable Patch
Antenna 3.2.1.4 Sensitivity Evaluation of the Implantable CP patch antenna
3.2.2 Miniaturized Circularly Polarized Implantable Annular-Ring Antenna
3.3 Wide AR Bandwidth Implantable Antenna 3.3.1 Miniaturized CP Implantable
Loop Antenna 3.3.1.1 Configuration of the CP Implantable Loop Antenna
3.3.1.2 Principle of the CP Implantable Loop Antenna 3.3.1.3 Antenna
Measurement and Discussions 3.3.1.4 Communication Link of the Implantable
CP Loop Antennas 3.3.2 Ground Radiation CP Implantable Antenna 3.4
Application Base Design of CP Implantable Antenna----Capsule Endoscopy
3.4.1 Axial-mode Multi-layer Helical Antenna 3.4.1.1 Antenna Structure
3.4.1.2 Conformal Capsule Antenna Design Including Biocompatibility Shell
Consideration 3.4.1.3 Wireless Capsule Endoscope System in a Human Body
3.4.1.4 In-Vitro testing and Discussions 3.4.2 Conformal CP Antenna for
Wireless Capsule Endoscope Systems 3.4.2.1 Antenna Layout and Simulation
Phantom 3.4.2.2 Mechanism of CP Operation 3.4.2.3 Results and Discussion
3.5 In Vivo Testing of Circularly Polarized Implantable Antennas 3.5.1
In-Vivo Testing Configuration 3.5.2 Measured Reflection Coefficient 3.5.3
Analysis of the Results and Discussions 3.6 Conclusions Reference 4
Differential-Fed Implantable Antennas 4.1 Introduction 4.2 Dual-band
Implantable Antenna for Neural Recording 4.2.1 Differential Reflection
Coefficient Characterization 4.2.2 Antenna Design and Operating Principle
4.2.3 Measurement and Discussions 4.2.4 Communication Link Study 4.3
Integrated on-chip Antenna in 0.18µm CMOS Technology 4.3.1 System
Requirement and Antenna Design 4.3.2 Chip-to-SMA Transition Design and
Measurement 4.4 Dual-band Implantable Antenna for Capsule Systems 4.4.1
Planar Implantable Antenna Design 4.4.2 Conformal Capsule Design 4.4.3
Coating and In Vitro Measurement 4.5 Miniaturized Differentially Fed
Dual-band Implantable Antenna 4.5.1 Miniaturized Dual-band Antenna Design
4.5.2 Parametric Analysis and Measurement 4.6 Differentially Fed Antenna
with Complex Input Impedance for Capsule Systems 4.6.1 Antenna Geometry
4.6.2 Operating Principle 4.6.2.1 Equivalent Circuit 4.6.2.2 Parametric
Study 4.6.2.3 Comparison With T-Match 4.6.3 Experiment 4.7 Conclusions
References 5 Wearable Antennas for On-/Off-Body Communications 5.1
Introduction 5.2 Exploring Wearable Antennas: Design, and Fabrication
Techniques 5.2.1 Typical Designs of Wearable Antennas 5.2.2 Variation of
Antenna Characteristics and Design Considerations 5.2.3 AMC-backed
Near-endfire Wearable Antenna 5.3 Latex Substrate and Screen-Printing for
Wearable Antennas Fabrication 5.4 AMC Backed Endfire Antenna 5.4.1
Bidirectional Yagi Antenna for Endfire Radiation 5.4.2 Near-Endfire Yagi
Antenna Backed by SAMC 5.4.3 Near-Endfire Yagi Antenna Backed by DAMC 5.5
Simulations of the Antennas in Free Space 5.5.1 Return Loss 5.5.2 Radiation
Patterns 5.5.3 Gain 5.6 Simulations of the Antennas on Human Body 5.6.1
Frequency detuning 5.6.2 SAR and Antenna Efficiency 5.6.2 Radiation
Patterns on A Human Body 5.7 Antenna Performance Under Deformation 5.8
Experiment 5.8.1 Return Loss 5.8.2 Radiation Pattern Measurement 5.8.3 Gain
Measurement 5.9 Conclusion Reference 6 Investigation and Modeling of
Capacitive Human Body Communication 6.1 Introduction 6.2 Galvanic and
Capacitive Coupling HBC 6.3 Capacitive HBC 6.3.1 Experimental
Characterizations 6.3.2 Numerical Models 6.3.3 Circuit Models of Capacitive
HBC 6.3.4 Theoretical Analysis 6.4 Investigation and Modeling of Capacitive
HBC 6.4.1 Measurement Setup and Results 6.4.2 Simulation Setup and Results
6.4.3 Equivalent Circuit Model 6.5 Conclusions: Other Design Considerations
of HBC systems 6.5.1 Channel Characteristics 6.5.2 Modulation and
Communication Performance 6.5.3 Systems and Application examples Reference
7 Near-Field Wireless Power Transfer for Biomedical Application 7.1
Introduction 7.2 Resonant Inductive Wireless Power Transfer (IWPT) and IWPT
Topologies 7.2.1 Resonances in IWPT 7.2.2 Resonant IWPT Topologies 7.2.3
Power Transfer Efficiency 7.2.4 Experimental Verification 7.2.5 Limitations
of the Resonance Tuning 7.3 IWPT Topology Selection Strategies 7.3.1 For
Applications With A Fixed Load 7.3.2 For Applications With A Variable Load
7.3.3 Optimal Operating Frequency 7.3.4 Upper Limit on Power Transfer
Efficiency 7.4 Capacitive Wireless Power Transfer (CWPT) 7.4.1 NCC Link
Modeling 7.4.1.1 Tissue Model 7.4.1.2 Tissue Loss 7.4.1.3 Conductor Loss
(RC) 7.4.1.4 Self-Inductance 7.4.1.5 Equivalent Capacitance 7.4.1.6 Return
Loss 7.4.1.7 Power Transfer Efficiency 7.4.1.8 Power Transfer Limit 7.4.2
Full-Wave Simulation 7.4.3 Optimal Link Design 7.5 CWPT: Experiments in
Nonhuman Primate Cadaver 7.5.1 Study on Power Transfer Efficiency 7.5.2
Flexion Study 7.6 Summary Reference 8 Far-Field Wireless Power Transmission
for Biomedical Application 8.1 Introduction 8.2 Far-Field EM Coupling 8.2.1
Power Transfer Efficiency 8.2.2 Link Design 8.2.3 Challenges and Solutions
8.3 Enhanced Far-Filed WPT Link for Implants 8.3.1 Safety Considerations
for Far-field Wireless Power Transmission 8.3.2 Implantable Rectenna Design
8.3.2.1 Implantable Antenna Configuration 8.3.2.2 Wireless Power Link Study
8.3.2.3 Safety Concerns 8.3.2.4 Method to Enhance the Received Power
8.3.2.5 Wireless power link with the parasitic patch 8.3.3 Measurement and
Discussion 8.3.3.1 Rectifier Circuit Design 8.3.3.2 Integration Solution of
the Implantable Rectenna 8.3.3.3 Measurement Setup 8.4 WPT Antenna
Misalignment: An Antenna Alignment Method Using Intermodulation 8.4.1
Operation Mechanism 8.4.1.1 PCE Enhancement and Intermodulation Generation
8.4.1.2 Relation Between Intermodulation and Misalignments 8.4.2
Miniaturized IMD Rectenna Design With NRIC Link 8.4.2.1 Miniaturized
Rectifier With Intermodulation Readout 8.4.2.2 IMD Antenna Co-Designed With
Rectifier Circuit 8.4.2.3 NRIC Link Establishment 8.4.3 Experimental
Validation 8.4.3.1 Experimental Setup 8.4.3.2 Results and Discussion 8.5
Summary Reference 9 System Design Example: Peripheral Nerve Implants and
Neurostimulators 9.1 Introduction 9.2 Wireless Powering and Telemetry for
Peripheral Nerve Implants 9.2.1 Peripheral Nerve Prostheses 9.2.1.1
Stimulator Implant 9.2.1.2 Neural Recording 9.2.1.3 Wireless Power Delivery
and Telemetry Requirements 9.2.2 Wireless Platform for Peripheral Nerve
Implants 9.2.2.1 Wireless Platform for Stimulator Implant 9.2.2.2 Wireless
platform for recording implant 9.2.3 Design and Experiments 9.2.3.1 Power
Transfer Characteristics in Tissue Environments 9.2.3.2 Power Transfer Link
for Peripheral Nerve Implants 9.2.3.3 Stimulator Implant Experiment 9.2.4
Safety 9.2.4.1 Biosafety 9.2.4.2 Electrical Safety 9.2.5 Near-Field
Resonant Inductive-Coupling Link (NRIC) Versus Near-Field
Capacitive-Coupling Link (NCC) 9.3 Co-matching Solution for Neurostimulator
Narrow Band Antenna 9.3.1 Co-matching Antenna Operating Mode 9.3.2 Antenna
Property in Body Phantom 9.3.3 Co-matching Circuit Design 9.3.4 Fabrication
Processing of the Proposed Antenna 9.3.5 Reflection Coefficient and
Impedance Measurement 9.3.6 Radiation Performance 9.4 Reconfigurable
Antenna for Neurostimulator 9.4.1 Tuning Principle 9.4.2 Antenna
Configuration and Design Procedures 9.4.3 Antenna Manufacturing and
Measurement Setup 9.4.4 System Design 9.4.5 Antenna Tuning and Optimized RF
Link 9.5 Summary Reference