> +1 or < -1. This means we have a seriously flawed regression model, mostly due to collinearity or non-linear data. Completing the analysis will lead to overfitting, and thus a meaningless significant study due to data spread wider than compatible with random. In order for the regression coefficients to remain in the right size, fortunately a shrinking procedure has been invented.
In the past two decades regularized regression has become a major topic of research, particularly with high dimensional data. Yet, the method is pretty new and infrequently used in real-data analysis. Its performance as compared to traditional null hypothesis testing has to be confirmed by prospective comparisons. Most studies published to date are of a theoretical nature involving statistical modeling and simulation studies. The journals Nature and Science published 19 and 10 papers of this sort in the past 8 years. The current edition will for the first time systematically test regularized regression against traditional regression analysis in 20 clinical data examples.
The edition is also a textbook and tutorial for medical and healthcare students as well as recollection bench and help desk for professionals. Each chapter can be studied as a standalone, and, using, real as well as hypothesized data, it tests the performance of the novel methodology against traditional regressions. Step by step analyses of 20 data files are included for self-assessment. The authors are well qualified in their field. Professor Zwinderman is past-president of the International Society of Biostatistics and Professor Cleophas is past-president of the American College of Angiology. The authors have been working together for 25 years and their research can be characterized as a continued effort to demonstrate that clinical data analysis is a discipline at the interface of biology and mathematics.
In the past two decades regularized regression has become a major topic of research, particularly with high dimensional data. Yet, the method is pretty new and infrequently used in real-data analysis. Its performance as compared to traditional null hypothesis testing has to be confirmed by prospective comparisons. Most studies published to date are of a theoretical nature involving statistical modeling and simulation studies. The journals Nature and Science published 19 and 10 papers of this sort in the past 8 years. The current edition will for the first time systematically test regularized regression against traditional regression analysis in 20 clinical data examples.
The edition is also a textbook and tutorial for medical and healthcare students as well as recollection bench and help desk for professionals. Each chapter can be studied as a standalone, and, using, real as well as hypothesized data, it tests the performance of the novel methodology against traditional regressions. Step by step analyses of 20 data files are included for self-assessment. The authors are well qualified in their field. Professor Zwinderman is past-president of the International Society of Biostatistics and Professor Cleophas is past-president of the American College of Angiology. The authors have been working together for 25 years and their research can be characterized as a continued effort to demonstrate that clinical data analysis is a discipline at the interface of biology and mathematics.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.