Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Applications of Deep Machine Learning in Future Energy Systems pushes the limits of current Artificial Intelligence techniques to present deep machine learning suitable for the complexity of sustainable energy systems. The first two chapters take the reader through the latest trends in power engineering and system design and operation, before laying out the current AI approaches and our outstanding limitations. Later chapters provide in-depth accounts of specific challenges and the use of innovative third-generation machine learning, including neuromorphic computing, to resolve issues from…mehr
Applications of Deep Machine Learning in Future Energy Systems pushes the limits of current Artificial Intelligence techniques to present deep machine learning suitable for the complexity of sustainable energy systems. The first two chapters take the reader through the latest trends in power engineering and system design and operation, before laying out the current AI approaches and our outstanding limitations. Later chapters provide in-depth accounts of specific challenges and the use of innovative third-generation machine learning, including neuromorphic computing, to resolve issues from security to power supply. An essential tool for the management, control, and modelling of future energy systems, Applications of Deep Machine Learning maps a practical path towards AI capable of supporting sustainable energy. - Clarifies the current state and future trends of energy system machine learning and the pitfalls facing our transitioning systems - Provides guidance on 3rd-generation AI tools for meeting the challenges of modeling and control in modern energy systems - Includes case studies and practical examples of potential applications to inspire and inform researchers and industry developers
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1. Introduction 2. Artificial intelligence and Machine learning in Future Energy Systems (State-of-Art, future development) Jalal Heidary 3. Digital Twins-Assisted Design of Next-Generation DC Microgrid Meysam Gheisarnejad, Maryam Homayounzadeh, Burak Yildirim 4. Deep Learning-Based Procedure for Profit Maximization of EV Charging Stations Mohammad Hassan Khooban, Peyman Razmi, MASOUMEH SEYEDYAZDI 5. Deep Frequency Control of Power Grids Under Cyber Attacks Mohammad Aghamohammadi, jalal heidary, Soroush Oshnoei 6. Application of Q-Learning in Stabilization of Multi Carrier Energy Systems Meysam Gheisarnejad, Maryam Homayounzadeh, Burak Yildirim 7. Design of Next-Generation of 5G Data Center Power Supply based on AI Mohammad Hassan Khooban, Meysam Gheisarnejad 8. Smart EV Battery Charger Based on Deep Machine Learning Mohammad Hassan Khooban, Jalil Boudjadar, Mehdi Rafiei 9. Machine learning in Talkative Power Mohammad Hassan Khooban, Zahra Ghahraman Izadi, Ali Mousavi 10. Advanced Control of Power Electronics-based Machine Learning Maryam Homayounzadeh, Meysam Gheisarnejad, Mohamadreza Homayounzade, Mohammad Hassan Khooban 11. Multi-Level Energy Management and Optimal Control System in Smart Cities Based on Deep Machine Learning Javid Ghafourian, Atefe Hedayatnia, Ahmed Al-Durra, Reza Sepehrzad
1. Introduction 2. Artificial intelligence and Machine learning in Future Energy Systems (State-of-Art, future development) Jalal Heidary 3. Digital Twins-Assisted Design of Next-Generation DC Microgrid Meysam Gheisarnejad, Maryam Homayounzadeh, Burak Yildirim 4. Deep Learning-Based Procedure for Profit Maximization of EV Charging Stations Mohammad Hassan Khooban, Peyman Razmi, MASOUMEH SEYEDYAZDI 5. Deep Frequency Control of Power Grids Under Cyber Attacks Mohammad Aghamohammadi, jalal heidary, Soroush Oshnoei 6. Application of Q-Learning in Stabilization of Multi Carrier Energy Systems Meysam Gheisarnejad, Maryam Homayounzadeh, Burak Yildirim 7. Design of Next-Generation of 5G Data Center Power Supply based on AI Mohammad Hassan Khooban, Meysam Gheisarnejad 8. Smart EV Battery Charger Based on Deep Machine Learning Mohammad Hassan Khooban, Jalil Boudjadar, Mehdi Rafiei 9. Machine learning in Talkative Power Mohammad Hassan Khooban, Zahra Ghahraman Izadi, Ali Mousavi 10. Advanced Control of Power Electronics-based Machine Learning Maryam Homayounzadeh, Meysam Gheisarnejad, Mohamadreza Homayounzade, Mohammad Hassan Khooban 11. Multi-Level Energy Management and Optimal Control System in Smart Cities Based on Deep Machine Learning Javid Ghafourian, Atefe Hedayatnia, Ahmed Al-Durra, Reza Sepehrzad
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826