Leonardo Azevedo Scardua
Applied Evolutionary Algorithms for Engineers using Python (eBook, ePUB)
57,95 €
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
57,95 €
Als Download kaufen
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
29 °P sammeln
Leonardo Azevedo Scardua
Applied Evolutionary Algorithms for Engineers using Python (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is written for students, scientists and engineers who need to apply evolutionary algorithms to practical optimization problems. The presentation of the theoretical background is complemented with didactical Python implementations of evolutionary algorithms that researchers have recently applied to complex optimization problems.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 39.87MB
Andere Kunden interessierten sich auch für
- Leonardo Azevedo ScarduaApplied Evolutionary Algorithms for Engineers using Python (eBook, PDF)57,95 €
- David E. CloughIntroduction to Engineering and Scientific Computing with Python (eBook, ePUB)97,95 €
- Slawomir GrysComputer Arithmetic in Practice (eBook, ePUB)31,95 €
- Dietmar HildenbrandThe Power of Geometric Algebra Computing (eBook, ePUB)47,95 €
- C. K. DhaliwalPython Programming (eBook, ePUB)52,95 €
- Handbook of Computer Programming with Python (eBook, ePUB)94,95 €
- Amol M. JagtapData Structures using C (eBook, ePUB)52,95 €
-
-
-
This book is written for students, scientists and engineers who need to apply evolutionary algorithms to practical optimization problems. The presentation of the theoretical background is complemented with didactical Python implementations of evolutionary algorithms that researchers have recently applied to complex optimization problems.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 225
- Erscheinungstermin: 14. Juni 2021
- Englisch
- ISBN-13: 9781000349801
- Artikelnr.: 61314641
- Verlag: Taylor & Francis
- Seitenzahl: 225
- Erscheinungstermin: 14. Juni 2021
- Englisch
- ISBN-13: 9781000349801
- Artikelnr.: 61314641
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Leonardo Azevedo Scardua received the B.S.E.E. degree in 1989 and the M.Sc. degree in 1996, both from the Federal University of Espírito Santo, Brazil, and the D.Sc. degree from the University of São Paulo Brazil, in 2015. He has extensive engineering experience with software systems for mission-critical applications, mainly in the railway industry. He is now with the Control Engineering Department at the Federal Institute of Technology of Espírito Santo, Brazil. His current research interests include evolutionary computation applied to control of dynamic systems with continuous action spaces and nonlinear state estimation.
Preface. SECTION I: INTRODUCTION. Evolutionary Algorithms and Difficult
Optimization Problems. Introduction to Optimization. Introduction to
Evolutionary Algorithms. SECTION II: SINGLE-OBJECTIVE EVOLUTIONARY
ALGORITHMS. Swarm Optimization. Evolution Strategies. Genetic Algorithms.
Differential Evolution. SECTION III: MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHMS. Non-Dominated Sorted Genetic Algorithm II. Multiobjective
Evolutionary Algorithm Based on Decomposition. SECTION IV: APPLYING
EVOLUTIONARY ALGORITHMS. Solving Optimization Problems with Evolutionary
Algorithms. Assessing the Performance of Evolutionary Algorithms. Case
Study - Optimal Design of a Gear Train System. Case Study - Teaching a
Legged Robot How to Walk. References.
Optimization Problems. Introduction to Optimization. Introduction to
Evolutionary Algorithms. SECTION II: SINGLE-OBJECTIVE EVOLUTIONARY
ALGORITHMS. Swarm Optimization. Evolution Strategies. Genetic Algorithms.
Differential Evolution. SECTION III: MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHMS. Non-Dominated Sorted Genetic Algorithm II. Multiobjective
Evolutionary Algorithm Based on Decomposition. SECTION IV: APPLYING
EVOLUTIONARY ALGORITHMS. Solving Optimization Problems with Evolutionary
Algorithms. Assessing the Performance of Evolutionary Algorithms. Case
Study - Optimal Design of a Gear Train System. Case Study - Teaching a
Legged Robot How to Walk. References.
Preface. SECTION I: INTRODUCTION. Evolutionary Algorithms and Difficult Optimization Problems. Introduction to Optimization. Introduction to Evolutionary Algorithms. SECTION II: SINGLE-OBJECTIVE EVOLUTIONARY ALGORITHMS. Swarm Optimization. Evolution Strategies. Genetic Algorithms. Differential Evolution. SECTION III: MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS. Non-Dominated Sorted Genetic Algorithm II. Multiobjective Evolutionary Algorithm Based on Decomposition. SECTION IV: APPLYING EVOLUTIONARY ALGORITHMS. Solving Optimization Problems with Evolutionary Algorithms. Assessing the Performance of Evolutionary Algorithms. Case Study - Optimal Design of a Gear Train System. Case Study - Teaching a Legged Robot How to Walk. References.
Preface. SECTION I: INTRODUCTION. Evolutionary Algorithms and Difficult
Optimization Problems. Introduction to Optimization. Introduction to
Evolutionary Algorithms. SECTION II: SINGLE-OBJECTIVE EVOLUTIONARY
ALGORITHMS. Swarm Optimization. Evolution Strategies. Genetic Algorithms.
Differential Evolution. SECTION III: MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHMS. Non-Dominated Sorted Genetic Algorithm II. Multiobjective
Evolutionary Algorithm Based on Decomposition. SECTION IV: APPLYING
EVOLUTIONARY ALGORITHMS. Solving Optimization Problems with Evolutionary
Algorithms. Assessing the Performance of Evolutionary Algorithms. Case
Study - Optimal Design of a Gear Train System. Case Study - Teaching a
Legged Robot How to Walk. References.
Optimization Problems. Introduction to Optimization. Introduction to
Evolutionary Algorithms. SECTION II: SINGLE-OBJECTIVE EVOLUTIONARY
ALGORITHMS. Swarm Optimization. Evolution Strategies. Genetic Algorithms.
Differential Evolution. SECTION III: MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHMS. Non-Dominated Sorted Genetic Algorithm II. Multiobjective
Evolutionary Algorithm Based on Decomposition. SECTION IV: APPLYING
EVOLUTIONARY ALGORITHMS. Solving Optimization Problems with Evolutionary
Algorithms. Assessing the Performance of Evolutionary Algorithms. Case
Study - Optimal Design of a Gear Train System. Case Study - Teaching a
Legged Robot How to Walk. References.
Preface. SECTION I: INTRODUCTION. Evolutionary Algorithms and Difficult Optimization Problems. Introduction to Optimization. Introduction to Evolutionary Algorithms. SECTION II: SINGLE-OBJECTIVE EVOLUTIONARY ALGORITHMS. Swarm Optimization. Evolution Strategies. Genetic Algorithms. Differential Evolution. SECTION III: MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS. Non-Dominated Sorted Genetic Algorithm II. Multiobjective Evolutionary Algorithm Based on Decomposition. SECTION IV: APPLYING EVOLUTIONARY ALGORITHMS. Solving Optimization Problems with Evolutionary Algorithms. Assessing the Performance of Evolutionary Algorithms. Case Study - Optimal Design of a Gear Train System. Case Study - Teaching a Legged Robot How to Walk. References.