22,95 €
22,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
11 °P sammeln
22,95 €
22,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
11 °P sammeln
Als Download kaufen
22,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
11 °P sammeln
Jetzt verschenken
22,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
11 °P sammeln
  • Format: PDF

Stochastic differential equations are differential equations whose solutions are stochastic processes. They exhibit appealing mathematical properties that are useful in modeling uncertainties and noisy phenomena in many disciplines. This book is motivated by applications of stochastic differential equations in target tracking and medical technology and, in particular, their use in methodologies such as filtering, smoothing, parameter estimation, and machine learning. It builds an intuitive hands-on understanding of what stochastic differential equations are all about, but also covers the…mehr

Produktbeschreibung
Stochastic differential equations are differential equations whose solutions are stochastic processes. They exhibit appealing mathematical properties that are useful in modeling uncertainties and noisy phenomena in many disciplines. This book is motivated by applications of stochastic differential equations in target tracking and medical technology and, in particular, their use in methodologies such as filtering, smoothing, parameter estimation, and machine learning. It builds an intuitive hands-on understanding of what stochastic differential equations are all about, but also covers the essentials of Ito calculus, the central theorems in the field, and such approximation schemes as stochastic Runge-Kutta. Greater emphasis is given to solution methods than to analysis of theoretical properties of the equations. The book's practical approach assumes only prior understanding of ordinary differential equations. The numerous worked examples and end-of-chapter exercises include application-driven derivations and computational assignments. MATLAB/Octave source code is available for download, promoting hands-on work with the methods.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Simo Särkkä is Associate Professor of Electrical Engineering and Automation at Aalto University, Finland, Technical Advisor at IndoorAtlas Ltd., and Adjunct Professor at Tampere University of Technology and Lappeenranta University of Technology. His research interests are in probabilistic modeling and sensor fusion for location sensing, health technology, and machine learning. He has authored over ninety peer-reviewed scientific articles as well as one book, titled Bayesian Filtering and Smoothing (Cambridge, 2013).